Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
2010358036948248592885712 ~2014
2010402976116083223808912 ~2013
2010434814144229565910312 ~2014
201046792194020935843911 ~2011
2010491569312062949415912 ~2013
2010496981312062981887912 ~2013
2010630976716085047813712 ~2013
201071077434021421548711 ~2011
201074864634021497292711 ~2011
201078224394021564487911 ~2011
201079159314021583186311 ~2011
201079541514021590830311 ~2011
201090261834021805236711 ~2011
201096400794021928015911 ~2011
201099766194021995323911 ~2011
201106991394022139827911 ~2011
201116564034022331280711 ~2011
201119679834022393596711 ~2011
201122636634022452732711 ~2011
201151484634023029692711 ~2011
2011627743712069766462312 ~2013
201164022834023280456711 ~2011
2011701194928163816728712 ~2014
201171532914023430658311 ~2011
201172995234023459904711 ~2011
Exponent Prime Factor Dig. Year
201210976732201...85426314 2023
201214232514024284650311 ~2011
2012166271116097330168912 ~2013
2012270072352319021879912 ~2014
201229931394024598627911 ~2011
2012323101748295754440912 ~2014
201232908714024658174311 ~2011
2012465623116099724984912 ~2013
201251778234025035564711 ~2011
201257572434025151448711 ~2011
201264613914025292278311 ~2011
201273279114025465582311 ~2011
2012823772944282123003912 ~2014
2012829964112076979784712 ~2013
201287575314025751506311 ~2011
201291386634025827732711 ~2011
2012952187728181330627912 ~2014
2013003243120130032431112 ~2013
2013043647712078261886312 ~2013
201305258394026105167911 ~2011
201310310994026206219911 ~2011
201311768994026235379911 ~2011
201318956394026379127911 ~2011
201319165314026383306311 ~2011
201332408394026648167911 ~2011
Exponent Prime Factor Dig. Year
2013378133712080268802312 ~2013
201348115314026962306311 ~2011
201352400034027048000711 ~2011
201380003394027600067911 ~2011
201402821394028056427911 ~2011
201403855434028077108711 ~2011
2014064368320140643683112 ~2013
201412596834028251936711 ~2011
2014165784960424973547112 ~2014
2014215356948341168565712 ~2014
201423652194028473043911 ~2011
201429146514028582930311 ~2011
201445326714028906534311 ~2011
2014466011312086796067912 ~2013
201451098234029021964711 ~2011
201465861114029317222311 ~2011
201470099514029401990311 ~2011
2014768723344324911912712 ~2014
201476896194029537923911 ~2011
201479930394029598607911 ~2011
2014934467936268820422312 ~2014
201501579834030031596711 ~2011
201505408434030108168711 ~2011
2015115924112090695544712 ~2013
201513228114030264562311 ~2011
Exponent Prime Factor Dig. Year
201540161994030803239911 ~2012
201540744714030814894311 ~2012
201545123514030902470311 ~2012
201557175114031143502311 ~2012
2015582241712093493450312 ~2013
2015590396116124723168912 ~2013
2015708514112094251084712 ~2013
2015724623328220144726312 ~2014
201581765394031635307911 ~2012
2015821433916126571471312 ~2013
2015923623120159236231112 ~2013
2016045345132256725521712 ~2014
201614976594032299531911 ~2012
201626535234032530704711 ~2012
201636653394032733067911 ~2012
2016396930748393526336912 ~2014
201648205794032964115911 ~2012
201669633594033392671911 ~2012
2016723936112100343616712 ~2013
201673979034033479580711 ~2012
2016772243360503167299112 ~2014
201702138594034042771911 ~2012
201705269634034105392711 ~2012
201707914794034158295911 ~2012
201716293434034325868711 ~2012
Home
5.157.210 digits
e-mail
25-11-02