Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
2017279505312103677031912 ~2013
2017392844348417428263312 ~2014
201741745194034834903911 ~2012
201743623194034872463911 ~2012
201744098514034881970311 ~2012
2017460176320174601763112 ~2013
201762814914035256298311 ~2012
201767808594035356171911 ~2012
201769944714035398894311 ~2012
2017721088112106326528712 ~2013
2017779599312106677595912 ~2013
201780985194035619703911 ~2012
201782301234035646024711 ~2012
2017910817712107464906312 ~2013
201809697234036193944711 ~2012
2018131771312108790627912 ~2013
2018147500716145180005712 ~2013
2018176539712109059238312 ~2013
201823366794036467335911 ~2012
2018340420112110042520712 ~2013
201844149834036882996711 ~2012
201854052114037081042311 ~2012
2018689557712112137346312 ~2013
201870152394037403047911 ~2012
201875987514037519750311 ~2012
Exponent Prime Factor Dig. Year
201876372714037527454311 ~2012
201879181434037583628711 ~2012
2018804169712112825018312 ~2013
201888737514037774750311 ~2012
201890526714037810534311 ~2012
201933030234038660604711 ~2012
201933452994038669059911 ~2012
201938691594038773831911 ~2012
201955486794039109735911 ~2012
2019664999712117989998312 ~2013
201968713914039374278311 ~2012
201976056714039521134311 ~2012
2019766857120197668571112 ~2013
201978762714039575254311 ~2012
2019905500320199055003112 ~2013
2020264555312121587331912 ~2013
202031800314040636006311 ~2012
202034337594040686751911 ~2012
202036316034040726320711 ~2012
2020467553116163740424912 ~2013
2020471988916163775911312 ~2013
2020526552384862115196712 ~2015
2020577514112123465084712 ~2013
2020590073152535341900712 ~2014
202067857194041357143911 ~2012
Exponent Prime Factor Dig. Year
2020810642320208106423112 ~2013
202082895114041657902311 ~2012
202090410714041808214311 ~2012
202093898394041877967911 ~2012
202094413314041888266311 ~2012
202095481194041909623911 ~2012
202100792514042015850311 ~2012
202102371114042047422311 ~2012
2021114563116168916504912 ~2013
2021242384944467332467912 ~2014
2021250224916170001799312 ~2013
202149581994042991639911 ~2012
2021511635916172093087312 ~2013
202151230314043024606311 ~2012
202152988194043059763911 ~2012
2021581553312129489319912 ~2013
2021639526720216395267112 ~2013
2021666947712130001686312 ~2013
202169046714043380934311 ~2012
202171579314043431586311 ~2012
2021798019712130788118312 ~2013
202184228634043684572711 ~2012
2021912242116175297936912 ~2013
202193684514043873690311 ~2012
202215242994044304859911 ~2012
Exponent Prime Factor Dig. Year
2022191202732355059243312 ~2014
202224800394044496007911 ~2012
2022293020716178344165712 ~2013
2022309014916178472119312 ~2013
202248627714044972554311 ~2012
202249260834044985216711 ~2012
2022709865312136259191912 ~2013
202271504394045430087911 ~2012
202274205234045484104711 ~2012
2022769117312136614703912 ~2013
2022846166716182769333712 ~2013
202290799194045815983911 ~2012
202302960114046059202311 ~2012
202314005034046280100711 ~2012
202328674914046573498311 ~2012
2023289958112139739748712 ~2013
202332144834046642896711 ~2012
202355932194047118643911 ~2012
202356390234047127804711 ~2012
202356804834047136096711 ~2012
202361292234047225844711 ~2012
202361936514047238730311 ~2012
202362621594047252431911 ~2012
202363480194047269603911 ~2012
202363665834047273316711 ~2012
Home
5.157.210 digits
e-mail
25-11-02