Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
2023766584944522864867912 ~2014
202380900834047618016711 ~2012
2023826987312142961923912 ~2013
202394460114047889202311 ~2012
202404099114048081982311 ~2012
202417739994048354799911 ~2012
2024253629948582087117712 ~2014
202426425714048528514311 ~2012
202435635594048712711911 ~2012
2024400913136439216435912 ~2014
202440850194048817003911 ~2012
202444637034048892740711 ~2012
202445172834048903456711 ~2012
202445470794048909415911 ~2012
2024489440748587746576912 ~2014
202465406634049308132711 ~2012
2024756323312148537939912 ~2013
202476980394049539607911 ~2012
202481647194049632943911 ~2012
202483155834049663116711 ~2012
2024896530112149379180712 ~2013
202494307314049886146311 ~2012
202494390714049887814311 ~2012
2025067621920250676219112 ~2013
202518902514050378050311 ~2012
Exponent Prime Factor Dig. Year
202522105194050442103911 ~2012
202522724514050454490311 ~2012
202524615834050492316711 ~2012
2025364565328355103914312 ~2014
2025434104716203472837712 ~2013
2025462988116203703904912 ~2013
202554536394051090727911 ~2012
202590112914051802258311 ~2012
202599540234051990804711 ~2012
202606611714052132234311 ~2012
202617432234052348644711 ~2012
2026505791312159034747912 ~2013
202656342714053126854311 ~2012
2026597770720265977707112 ~2013
202667117394053342347911 ~2012
202667334234053346684711 ~2012
2026731043312160386259912 ~2013
2026796563712160779382312 ~2013
202681713234053634264711 ~2012
202695486834053909736711 ~2012
2027019181312162115087912 ~2013
202705130514054102610311 ~2012
202727021994054540439911 ~2012
202731932034054638640711 ~2012
2027361550112164169300712 ~2013
Exponent Prime Factor Dig. Year
202744599234054891984711 ~2012
2027485279116219882232912 ~2013
202752150114055043002311 ~2012
202753484034055069680711 ~2012
202754228034055084560711 ~2012
202758461634055169232711 ~2012
202761084234055221684711 ~2012
2027661334116221290672912 ~2013
202781264994055625299911 ~2012
2027983236112167899416712 ~2013
2028008809985176370015912 ~2015
202801086594056021731911 ~2012
2028023896320280238963112 ~2013
202813812714056276254311 ~2012
2028184223328394579126312 ~2014
202821628914056432578311 ~2012
202824081234056481624711 ~2012
202824211434056484228711 ~2012
202831063794056621275911 ~2012
2028312120720283121207112 ~2013
2028803629728403250815912 ~2014
2028837658385211181648712 ~2015
2028870150112173220900712 ~2013
202890915234057818304711 ~2012
2029080525136523449451912 ~2014
Exponent Prime Factor Dig. Year
202914259194058285183911 ~2012
202918805034058376100711 ~2012
202924936314058498726311 ~2012
202928359194058567183911 ~2012
202929940194058598803911 ~2012
2029308468112175850808712 ~2013
202937239914058744798311 ~2012
202960816914059216338311 ~2012
202962949434059258988711 ~2012
202966459314059329186311 ~2012
202978157994059563159911 ~2012
2029986127312179916763912 ~2013
203010179634060203592711 ~2012
203016872394060337447911 ~2012
203021389314060427786311 ~2012
203025609594060512191911 ~2012
2030294569920302945699112 ~2013
2030314928916242519431312 ~2013
203042789994060855799911 ~2012
2030478594769036272219912 ~2015
203052930234061058604711 ~2012
203053410714061068214311 ~2012
203056812114061136242311 ~2012
203059827714061196554311 ~2012
203073991914061479838311 ~2012
Home
5.157.210 digits
e-mail
25-11-02