Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
494864377199897287543911 ~2015
494917251839898345036711 ~2015
494962666439899253328711 ~2015
494974670399899493407911 ~2015
495007812839900156256711 ~2015
4950195349739601562797712 ~2016
4950290509729701743058312 ~2016
495033874919900677498311 ~2015
495040657919900813158311 ~2015
4950777642779212442283312 ~2017
495098203199901964063911 ~2015
495108965039902179300711 ~2015
495163708792733...72520914 2024
495185792833733...77938314 2024
495240840599904816811911 ~2015
495266812199905336243911 ~2015
495274599119905491982311 ~2015
495279951239905599024711 ~2015
495285279599905705591911 ~2015
495300311519906006230311 ~2015
495307517999906150359911 ~2015
495327085919906541718311 ~2015
495328325399906566507911 ~2015
495342575999906851519911 ~2015
495351373319907027466311 ~2015
Exponent Prime Factor Dig. Year
495359481839907189636711 ~2015
4953663259739629306077712 ~2016
495375396599907507931911 ~2015
495375756839907515136711 ~2015
495409528199908190563911 ~2015
495434612519908692250311 ~2015
495451336919909026738311 ~2015
495477751919909555038311 ~2015
4955032657729730195946312 ~2016
495507668519910153370311 ~2015
495524842799910496855911 ~2015
495557441519911148830311 ~2015
495559674599911193491911 ~2015
495570621119911412422311 ~2015
495583146719911662934311 ~2015
495599416439911988328711 ~2015
495611557199912231143911 ~2015
4956257482739650059861712 ~2016
495625981919912519638311 ~2015
4956462917329738777503912 ~2016
4956648310349566483103112 ~2016
495680317439913606348711 ~2015
495692836919913856738311 ~2015
4957593653369406311146312 ~2017
495776395439915527908711 ~2015
Exponent Prime Factor Dig. Year
495777748439915554968711 ~2015
495802458599916049171911 ~2015
495804030119916080602311 ~2015
4958266871939666134975312 ~2016
4958303349729749820098312 ~2016
495843216239916864324711 ~2015
495843289919916865798311 ~2015
495897544799917950895911 ~2015
4959046006129754276036712 ~2016
495941123639918822472711 ~2015
495971336999919426739911 ~2015
495992913599919858271911 ~2015
495997034519919940690311 ~2015
496047006119920940122311 ~2015
496048589039920971780711 ~2015
4960497760739683982085712 ~2016
496064222698452...54637714 2023
4961201409729767208458312 ~2016
496131574919922631498311 ~2015
496154140319923082806311 ~2015
4961560898939692487191312 ~2016
496185601439923712028711 ~2015
496228342319924566846311 ~2015
4962428383329774570299912 ~2016
496259459039925189180711 ~2015
Exponent Prime Factor Dig. Year
4962972105149629721051112 ~2016
496297958639925959172711 ~2015
4963027756379408444100912 ~2017
496358236199927164723911 ~2015
4963969026749639690267112 ~2016
496412783999928255679911 ~2015
496415812439928316248711 ~2015
496422884999928457699911 ~2015
496430543999928610879911 ~2015
496441821839928836436711 ~2015
496442901239928858024711 ~2015
496451135039929022700711 ~2015
496465441919929308838311 ~2015
496500100439930002008711 ~2015
496508671799930173435911 ~2015
4965139479729790836878312 ~2016
4965190644129791143864712 ~2016
4965635310129793811860712 ~2016
4965837607739726700861712 ~2016
496590061919931801238311 ~2015
496590812999931816259911 ~2015
4966087357329796524143912 ~2016
496612812599932256251911 ~2015
496641619799932832395911 ~2015
496723810199934476203911 ~2015
Home
4.888.230 digits
e-mail
25-06-29