Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
450484064999009681299911 ~2014
4504841300936038730407312 ~2016
4504852919327029117515912 ~2015
450500074199010001483911 ~2014
4505410864345054108643112 ~2016
4505658307327033949843912 ~2015
450592125719011842514311 ~2014
450613453799012269075911 ~2014
450638289839012765796711 ~2014
450649411919012988238311 ~2014
450657374399013147487911 ~2014
450657388439013147768711 ~2014
450688647599013772951911 ~2014
450700668839014013376711 ~2014
4507163235727042979414312 ~2015
450737652599014753051911 ~2014
450742408199014848163911 ~2014
450764562599015291251911 ~2014
4507919235727047515414312 ~2015
450818214239016364284711 ~2014
450842685719016853714311 ~2014
450851559599017031191911 ~2014
450862166039017243320711 ~2014
4508978654963125701168712 ~2016
450919231799018384635911 ~2014
Exponent Prime Factor Dig. Year
4509316362745093163627112 ~2016
4509381362936075050903312 ~2016
4510200611936081604895312 ~2016
451031371199020627423911 ~2014
4510350861727062105170312 ~2015
4510404133727062424802312 ~2015
451054005839021080116711 ~2014
451058815199021176303911 ~2014
451062161399021243227911 ~2014
451092313199021846263911 ~2014
451093021319021860426311 ~2014
4511154394736089235157712 ~2016
451123431239022468624711 ~2014
4511249362372179989796912 ~2016
451130107799022602155911 ~2014
451135263239022705264711 ~2014
451148488199022969763911 ~2014
451163021399023260427911 ~2014
451169211599023384231911 ~2014
451171746719023434934311 ~2014
451171944599023438891911 ~2014
451180829693419...89050314 2023
451209350039024187000711 ~2014
451242002639024840052711 ~2014
451252934039025058680711 ~2014
Exponent Prime Factor Dig. Year
451272070439025441408711 ~2014
4512967507727077805046312 ~2015
451334645039026692900711 ~2014
4513463217727080779306312 ~2015
4513538329727081229978312 ~2015
451387805399027756107911 ~2014
451412003999028240079911 ~2014
4514216533727085299202312 ~2015
4514466707936115733663312 ~2016
451474357439029487148711 ~2014
451479379274189...39625714 2023
451496810399029936207911 ~2014
451499747999029994959911 ~2014
451505285931517...60724914 2024
451516898999030337979911 ~2014
451534099199030681983911 ~2014
451581422999031628459911 ~2014
451604567519032091350311 ~2014
451616708399032334167911 ~2014
4516346606936130772855312 ~2016
4516372352936130978823312 ~2016
451644723839032894476711 ~2014
451646449199032928983911 ~2014
451650060599033001211911 ~2014
451685509919033710198311 ~2014
Exponent Prime Factor Dig. Year
451702935599034058711911 ~2014
451704087119034081742311 ~2014
451720973639034419472711 ~2014
451753490399035069807911 ~2014
451757243399035144867911 ~2014
451758301919035166038311 ~2014
451775763719035515274311 ~2014
451788484199035769683911 ~2014
451820413439036408268711 ~2014
451850093399037001867911 ~2014
4518622863172297965809712 ~2016
451877654399037553087911 ~2014
451892430239037848604711 ~2014
451920943199038418863911 ~2014
451922429399038448587911 ~2014
451979619119039592382311 ~2014
452012615519040252310311 ~2014
4520132444963281854228712 ~2016
452021212319040424246311 ~2014
452085207839041704156711 ~2014
452103644039042072880711 ~2014
4521102696127126616176712 ~2015
452139390599042787811911 ~2014
452151636119043032722311 ~2014
452181092039043621840711 ~2014
Home
4.888.230 digits
e-mail
25-06-29