Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
294898949395897978987911 ~2013
294911972995898239459911 ~2013
294928903795898578075911 ~2013
294942086035898841720711 ~2013
294944515795898890315911 ~2013
294951123595899022471911 ~2013
294975157915899503158311 ~2013
2949832885741297660399912 ~2015
295001203435900024068711 ~2013
295006841515900136830311 ~2013
2950268100117701608600712 ~2014
295035394195900707883911 ~2013
2950550202747208803243312 ~2015
295081988995901639779911 ~2013
2950858433317705150599912 ~2014
2950913065770821913576912 ~2015
295096358395901927167911 ~2013
2951192648941316697084712 ~2015
2951666837317710001023912 ~2014
295177627315903552546311 ~2013
295183595995903671919911 ~2013
295188600235903772004711 ~2013
2952206836123617654688912 ~2014
295229663035904593260711 ~2013
2952304603723618436829712 ~2014
Exponent Prime Factor Dig. Year
295234236595904684731911 ~2013
295246607995904932159911 ~2013
2952669942729526699427112 ~2014
295274703595905494071911 ~2013
2952856755747245708091312 ~2015
295288107715905762154311 ~2013
295293160315905863206311 ~2013
2953008706117718052236712 ~2014
295312295995906245919911 ~2013
2953242703929532427039112 ~2014
295330927795906618555911 ~2013
295332676195906653523911 ~2013
295347945595906958911911 ~2013
295354379035907087580711 ~2013
295378862395907577247911 ~2013
2953823443723630587549712 ~2014
2953895017970893480429712 ~2015
2953899994329538999943112 ~2014
295393141795907862835911 ~2013
2954398457923635187663312 ~2014
295443186911825...95103914 2023
2954445287923635562303312 ~2014
295457057515909141150311 ~2013
295484622115909692442311 ~2013
2954912963317729477779912 ~2014
Exponent Prime Factor Dig. Year
2955137074723641096597712 ~2014
295527181315910543626311 ~2013
295579696435911593928711 ~2013
2955963115176855040992712 ~2016
295651437115913028742311 ~2013
295657107115913142142311 ~2013
295668103195913362063911 ~2013
295681409995913628199911 ~2013
295693383715913867674311 ~2013
295693704715913874094311 ~2013
295695036115913900722311 ~2013
2956954528723655636229712 ~2014
2956994878723655959029712 ~2014
295720214995914404299911 ~2013
295721813635914436272711 ~2013
295741288915914825778311 ~2013
295746416395914928327911 ~2013
295754369635915087392711 ~2013
295756601995915132039911 ~2013
2957717622117746305732712 ~2014
295780150795915603015911 ~2013
295818353515916367070311 ~2013
2958262065717749572394312 ~2014
295837310035916746200711 ~2013
295846644715916932894311 ~2013
Exponent Prime Factor Dig. Year
295865761195917315223911 ~2013
2958682228329586822283112 ~2015
295883239915917664798311 ~2013
295902437995918048759911 ~2013
295915865995918317319911 ~2013
295955064115919101282311 ~2013
295963888195919277763911 ~2013
295970951035919419020711 ~2013
295974831835919496636711 ~2013
2959761912729597619127112 ~2015
2959940355129599403551112 ~2015
2959953258117759719548712 ~2014
2960025435717760152614312 ~2014
2960085712723680685701712 ~2014
2960155889317760935335912 ~2014
2960241632923681933063312 ~2014
296038092235920761844711 ~2013
2960407117723683256941712 ~2014
2960463289123683706312912 ~2014
2960607999129606079991112 ~2015
296061785515921235710311 ~2013
296078650195921573003911 ~2013
296102146195922042923911 ~2013
2961190615317767143691912 ~2014
296124018115922480362311 ~2013
Home
4.888.230 digits
e-mail
25-06-29