Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5224098953910448197907912 ~2015
5224240478310448480956712 ~2015
5224704350310449408700712 ~2015
5224825861331348955167912 ~2016
5224918153110449836306312 ~2015
5225134267731350805606312 ~2016
5225221661331351329967912 ~2016
5225293508310450587016712 ~2015
5225532296310451064592712 ~2015
5225623580310451247160712 ~2015
5225717236141805737888912 ~2016
5225720641110451441282312 ~2015
5226045699152260456991112 ~2016
5226062113110452124226312 ~2015
5226691871910453383743912 ~2015
5227522895910455045791912 ~2015
5228133020310456266040712 ~2015
5228269745910456539491912 ~2015
5228494898310456989796712 ~2015
5228873291331373239747912 ~2016
5229018017910458036035912 ~2015
5229135980310458271960712 ~2015
5229603899910459207799912 ~2015
5229827105910459654211912 ~2015
5230146538352301465383112 ~2016
Exponent Prime Factor Dig. Year
5230220924310460441848712 ~2015
5230282099110460564198312 ~2015
5230449161910460898323912 ~2015
5230864079910461728159912 ~2015
5230913459910461826919912 ~2015
5231723029110463446058312 ~2015
5231844956310463689912712 ~2015
5232054709110464109418312 ~2015
5232080407110464160814312 ~2015
5232164171910464328343912 ~2015
5232191329110464382658312 ~2015
5232582199141860657592912 ~2016
5232592124310465184248712 ~2015
5232707087910465414175912 ~2015
5232794597910465589195912 ~2015
5232925913373260962786312 ~2017
5233332439110466664878312 ~2015
5233419577741867356621712 ~2016
5233691713110467383426312 ~2015
5233782290310467564580712 ~2015
5234116307910468232615912 ~2015
5234506091910469012183912 ~2015
5234530963110469061926312 ~2015
5234796638310469593276712 ~2015
5234896651110469793302312 ~2015
Exponent Prime Factor Dig. Year
5235359775731412158654312 ~2016
5235401516310470803032712 ~2015
5235446108310470892216712 ~2015
5235521955731413131734312 ~2016
5235779899110471559798312 ~2015
5235877654141887021232912 ~2016
5236531242131419187452712 ~2016
5236637449110473274898312 ~2015
5236822537331420935223912 ~2016
5236914457110473828914312 ~2015
523707934933257...55264714 2023
5237138381910474276763912 ~2015
5237299507110474599014312 ~2015
5237802269910475604539912 ~2015
5237815787910475631575912 ~2015
5237913908941903311271312 ~2016
5237980753110475961506312 ~2015
5238137731773333928243912 ~2017
5238205110131429230660712 ~2016
5238441349110476882698312 ~2015
5238842357910477684715912 ~2015
5238975794310477951588712 ~2015
5239411780131436470680712 ~2016
5239718417910479436835912 ~2015
5239727417910479454835912 ~2015
Exponent Prime Factor Dig. Year
5239821355110479642710312 ~2015
524006911971917...97810314 2023
5240430586131442583516712 ~2016
5240432225910480864451912 ~2015
5240455477110480910954312 ~2015
5240595097773368331367912 ~2017
5240614808941924918471312 ~2016
5240988809910481977619912 ~2015
5241238201331447429207912 ~2016
5241288655110482577310312 ~2015
5241487411110482974822312 ~2015
5242277399910484554799912 ~2015
5242544689110485089378312 ~2015
5242808957910485617915912 ~2015
5242824890310485649780712 ~2015
5243058517110486117034312 ~2015
5243347645110486695290312 ~2015
5243568961731461413770312 ~2016
5244443730752444437307112 ~2016
5244839948310489679896712 ~2015
5244965993910489931987912 ~2015
5245225693110490451386312 ~2015
5245886024310491772048712 ~2015
5246040136141968321088912 ~2016
5246508223110493016446312 ~2015
Home
4.724.182 digits
e-mail
25-04-13