Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
112001312032240026240711 ~2010
112001721112240034422311 ~2010
112005832918960466632911 ~2011
112008471178960677693711 ~2011
112009434712240188694311 ~2010
112009707832240194156711 ~2010
1120099902133602997063112 ~2012
112013660032240273200711 ~2010
112014981232240299624711 ~2010
112015521112240310422311 ~2010
1120246027726885904664912 ~2012
112025554432240511088711 ~2010
112025804632240516092711 ~2010
112026913192240538263911 ~2010
112030597792240611955911 ~2010
112031602912240632058311 ~2010
112037577536722254651911 ~2011
112039208632240784172711 ~2010
112039339912240786798311 ~2010
112044888112240897762311 ~2010
112047490432240949808711 ~2010
112047589192240951783911 ~2010
112052207392241044147911 ~2010
112055089978964407197711 ~2011
112059440632241188812711 ~2010
Exponent Prime Factor Dig. Year
112070324392241406487911 ~2010
112073848432241476968711 ~2010
1120747489715690464855912 ~2012
112076783512241535670311 ~2010
112079139112241582782311 ~2010
112082224576724933474311 ~2011
112083214312241664286311 ~2010
112091768216725506092711 ~2011
112103980192242079603911 ~2010
112106297992242125959911 ~2010
112106465632242129312711 ~2010
112107454312242149086311 ~2010
112111681912242233638311 ~2010
112112254376726735262311 ~2011
112113947392242278947911 ~2010
112114737832242294756711 ~2010
112116848392242336967911 ~2010
112117042792242340855911 ~2010
112117080176727024810311 ~2011
112126381976727582918311 ~2011
112130749136727844947911 ~2011
112131366736727882003911 ~2011
112132946992242658939911 ~2010
112143330232242866604711 ~2010
112144758592242895171911 ~2010
Exponent Prime Factor Dig. Year
112145485378971638829711 ~2011
112149019912242980398311 ~2010
112169474576730168474311 ~2011
1121718676311217186763112 ~2011
112174963192243499263911 ~2010
112180036312243600726311 ~2010
112181364592243627291911 ~2010
112182664432243653288711 ~2010
112184351992243687039911 ~2010
112184584792243691695911 ~2010
112187306512243746130311 ~2010
112188658912243773178311 ~2010
112193797333336...32594314 2025
112198202992243964059911 ~2010
112199133112243982662311 ~2010
112201810192244036203911 ~2010
112202780816732166848711 ~2011
1122053311911220533119112 ~2011
112211020312244220406311 ~2010
112211480512244229610311 ~2010
112212121432244242428711 ~2010
112213105432244262108711 ~2010
112216228312244324566311 ~2010
112216316992244326339911 ~2010
112216620592244332411911 ~2010
Exponent Prime Factor Dig. Year
112216833536733010011911 ~2011
112221625976733297558311 ~2011
112222951912244459038311 ~2010
112227549536733652971911 ~2011
1122284059715711976835912 ~2012
112232205778978576461711 ~2011
112233431512244668630311 ~2010
112235965216734157912711 ~2011
112240817632244816352711 ~2010
1122492120711224921207112 ~2011
112252607512245052150311 ~2010
112258719112245174382311 ~2010
112259505232245190104711 ~2010
112262789936735767395911 ~2011
112265019712245300394311 ~2010
112265479912245309598311 ~2010
112275604192245512083911 ~2010
112277096512245541930311 ~2010
1122983958117967743329712 ~2012
112301069632246021392711 ~2010
112302324176738139450311 ~2011
112304151592246083031911 ~2010
112315696312246313926311 ~2010
1123178768915724502764712 ~2012
112324841992246496839911 ~2010
Home
5.157.210 digits
e-mail
25-11-02