Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
3643050736121858304416712 ~2015
364309208037286184160711 ~2013
364310841717286216834311 ~2013
3643265251729146122013712 ~2015
364352398917287047978311 ~2013
364367831997287356639911 ~2013
364372727997287454559911 ~2013
364372732917287454658311 ~2013
364404699597288093991911 ~2013
364413469437288269388711 ~2013
364414431837288288636711 ~2013
3644235961721865415770312 ~2015
3644257333358308117332912 ~2016
3644366717929154933743312 ~2015
3644606827129156854616912 ~2015
364461215397289224307911 ~2013
364467213237289344264711 ~2013
364489945317289798906311 ~2013
3644926282336449262823112 ~2015
364505537397290110747911 ~2013
3645119654929160957239312 ~2015
364518226917290364538311 ~2013
3645213853729161710829712 ~2015
364582867495804...50440914 2025
3645992323129167938584912 ~2015
Exponent Prime Factor Dig. Year
3646185821929169486575312 ~2015
3646211950129169695600912 ~2015
364633495197292669903911 ~2013
364745861397294917227911 ~2013
364804355997296087119911 ~2013
364804884837296097696711 ~2013
364806426837296128536711 ~2013
364808913717296178274311 ~2013
364824021237296480424711 ~2013
364829485317296589706311 ~2013
3648306007165669508127912 ~2016
364847213637296944272711 ~2013
364873812237297476244711 ~2013
364876170117297523402311 ~2013
364886322237297726444711 ~2013
364901591517298031830311 ~2013
3649115209936491152099112 ~2015
3649659377929197275023312 ~2015
364967411397299348227911 ~2013
364973925597299478511911 ~2013
364974212037299484240711 ~2013
364977816237299556324711 ~2013
3650119882121900719292712 ~2015
365014757397300295147911 ~2013
365016205797300324115911 ~2013
Exponent Prime Factor Dig. Year
365024211717300484234311 ~2013
365027619597300552391911 ~2013
3650322931729202583453712 ~2015
365083605717301672114311 ~2013
365124689397302493787911 ~2013
365158000917303160018311 ~2013
365158108797303162175911 ~2013
3651985264121911911584712 ~2015
365229410997304588219911 ~2013
365230826397304616527911 ~2013
365232321837304646436711 ~2013
3652375357358438005716912 ~2016
365238244437304764888711 ~2013
365258011317305160226311 ~2013
365295107397305902147911 ~2013
365295821517305916430311 ~2013
365299723797305994475911 ~2013
3653334053321920004319912 ~2015
365336179317306723586311 ~2013
365342343117306846862311 ~2013
365378575917307571518311 ~2013
365383881717307677634311 ~2013
365393167917307863358311 ~2013
365411280597308225611911 ~2013
3654121627321924729763912 ~2015
Exponent Prime Factor Dig. Year
365425619997308512399911 ~2014
365445624597308912491911 ~2014
365450465637309009312711 ~2014
365460566997309211339911 ~2014
3654745863721928475182312 ~2015
365479584237309591684711 ~2014
365505527397310110547911 ~2014
365526154197310523083911 ~2014
365526166437310523328711 ~2014
3655444645936554446459112 ~2015
3655486692121932920152712 ~2015
365552992437311059848711 ~2014
365574627597311492551911 ~2014
3656017625321936105751912 ~2015
3656219142758499506283312 ~2016
365625720837312514416711 ~2014
365642827917312856558311 ~2014
365675330637313506612711 ~2014
365676785517313535710311 ~2014
365679420117313588402311 ~2014
365686841997313736839911 ~2014
365713105197314262103911 ~2014
3657229068758515665099312 ~2016
365742766917314855338311 ~2014
365746201917314924038311 ~2014
Home
4.724.182 digits
e-mail
25-04-13