Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
403046866198060937323911 ~2014
4030489815724182938894312 ~2015
403053042238061060844711 ~2014
403095610318061912206311 ~2014
403158464638063169292711 ~2014
403217329438064346588711 ~2014
4032236785972580262146312 ~2016
403231632718064632654311 ~2014
403244032191943...35155914 2023
403244380198064887603911 ~2014
403250261398065005227911 ~2014
403261788838065235776711 ~2014
403299221638065984432711 ~2014
4033114398124198686388712 ~2015
403324546198066490923911 ~2014
4033451089756468315255912 ~2016
403358504638067170092711 ~2014
4033594120732268752965712 ~2015
403376767198067535343911 ~2014
4033881917324203291503912 ~2015
403431030718068620614311 ~2014
403449969598068999391911 ~2014
403467665638069353312711 ~2014
4034699539732277596317712 ~2015
403499540038069990800711 ~2014
Exponent Prime Factor Dig. Year
4035057412340350574123112 ~2016
403517854318070357086311 ~2014
403530884398070617687911 ~2014
403547520718070950414311 ~2014
4035498523324212991139912 ~2015
403594445398071888907911 ~2014
403618612318072372246311 ~2014
4036241812132289934496912 ~2015
403635775918072715518311 ~2014
403695224638073904492711 ~2014
4036953012124221718072712 ~2015
403736930518074738610311 ~2014
403757898598075157971911 ~2014
403767623518075352470311 ~2014
403777602598075552051911 ~2014
403797680038075953600711 ~2014
403815639838076312796711 ~2014
4038261219140382612191112 ~2016
4038594955724231569734312 ~2015
403862030038077240600711 ~2014
403863195118077263902311 ~2014
403924459798078489195911 ~2014
403946919598078938391911 ~2014
4039479136132315833088912 ~2015
4039549102132316392816912 ~2015
Exponent Prime Factor Dig. Year
403965410518079308210311 ~2014
403994534998079890699911 ~2014
404011607998080232159911 ~2014
4040502544340405025443112 ~2016
4040635999732325087997712 ~2015
404073538918081470778311 ~2014
404074542598081490851911 ~2014
404077984438081559688711 ~2014
404088150718081763014311 ~2014
4040884900124245309400712 ~2015
4041035351324246212107912 ~2015
404131249198082624983911 ~2014
404163704518083274090311 ~2014
404189147038083782940711 ~2014
404214108718084282174311 ~2014
404259593638085191872711 ~2014
404264854798085297095911 ~2014
404270523118085410462311 ~2014
404271733991228...71329714 2023
404299037518085980750311 ~2014
4043230927940432309279112 ~2016
4043512045940435120459112 ~2016
404356092238087121844711 ~2014
404387355598087747111911 ~2014
4044181162340441811623112 ~2016
Exponent Prime Factor Dig. Year
4044469521724266817130312 ~2015
404451241198089024823911 ~2014
404498262718089965254311 ~2014
4045235086364723761380912 ~2016
404537404198090748083911 ~2014
404539420438090788408711 ~2014
404545292398090905847911 ~2014
404548278238090965564711 ~2014
404579329798091586595911 ~2014
4046061109732368488877712 ~2015
404655333718093106674311 ~2014
404680796998093615939911 ~2014
404687212318093744246311 ~2014
404688177311400...93492714 2024
404691502198093830043911 ~2014
404702233318094044666311 ~2014
404708431318094168626311 ~2014
404714116198094282323911 ~2014
404714737198094294743911 ~2014
404735396998094707939911 ~2014
404741644438094832888711 ~2014
404762126038095242520711 ~2014
404769538318095390766311 ~2014
404771853838095437076711 ~2014
404822087518096441750311 ~2014
Home
4.724.182 digits
e-mail
25-04-13