Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
86320533831726410676711 ~2009
86331111711726622234311 ~2009
86332244031726644880711 ~2009
86336055591726721111911 ~2009
863365171318994033768712 ~2011
86336878616906950288911 ~2010
86338048431726760968711 ~2009
86343534591726870691911 ~2009
86346294111726925882311 ~2009
86347791231726955824711 ~2009
86348140911726962818311 ~2009
86348987216907918976911 ~2010
86355148431727102968711 ~2009
86355774591727115491911 ~2009
863559727920725433469712 ~2011
86358104391727162087911 ~2009
863643413312091007786312 ~2011
86367533991727350679911 ~2009
86367975231727359504711 ~2009
86371796511727435930311 ~2009
86374779231727495584711 ~2009
86378143191727562863911 ~2009
86379082431727581648711 ~2009
86379844796910387583311 ~2010
86380109335182806559911 ~2010
Exponent Prime Factor Dig. Year
863826163319004175592712 ~2011
86391598911727831978311 ~2009
86392733991727854679911 ~2009
86394686718639468671111 ~2010
86398242831727964856711 ~2009
863983320113823733121712 ~2011
86398430991727968619911 ~2009
86404747431728094948711 ~2009
86404827711728096554311 ~2009
86404920831728098416711 ~2009
86410415335184624919911 ~2010
86412631935184757915911 ~2010
86417262591728345251911 ~2009
86423033991728460679911 ~2009
86423227911728464558311 ~2009
864251200153583574406312 ~2012
864254107115556573927912 ~2011
86425601631728512032711 ~2009
864300172336300607236712 ~2012
86430600111728612002311 ~2009
86431396191728627923911 ~2009
86436434396914914751311 ~2010
86437676631728753532711 ~2009
86441681391728833627911 ~2009
86446218716915697496911 ~2010
Exponent Prime Factor Dig. Year
86448321231728966424711 ~2009
86449842231728996844711 ~2009
864541725720749001416912 ~2011
86454946311729098926311 ~2009
86455169631729103392711 ~2009
86457165776916573261711 ~2010
86457711591729154231911 ~2009
86460357591729207151911 ~2009
86462652231729253044711 ~2009
86467521831729350436711 ~2009
86471102031729422040711 ~2009
86471433591729428671911 ~2009
86471505111729430102311 ~2009
86480268476918421477711 ~2010
86482594791729651895911 ~2009
86484647391729692947911 ~2009
86485760991729715219911 ~2009
864858289712108016055912 ~2011
864879882720757117184912 ~2011
86489538111729790762311 ~2009
86490426831729808536711 ~2009
86492783031729855660711 ~2009
86502225318650222531111 ~2010
86502849591730056991911 ~2009
865037388119030822538312 ~2011
Exponent Prime Factor Dig. Year
86506006911730120138311 ~2009
865061086127681954755312 ~2012
865084397969206751832112 ~2013
86511172911730223458311 ~2009
86516687031730333740711 ~2009
86518168791730363375911 ~2009
86520087591730401751911 ~2009
86522438511730448770311 ~2009
86532643311730652866311 ~2009
86538640311730772806311 ~2009
86544987296923598983311 ~2010
86545183911730903678311 ~2009
865463656313847418500912 ~2011
86547682311730953646311 ~2009
86550900231731018004711 ~2009
86552401038655240103111 ~2010
86552652111731053042311 ~2009
86552900935193174055911 ~2010
86553795591731075911911 ~2009
86557098231731141964711 ~2009
86557896711731157934311 ~2009
86559285591731185711911 ~2009
86561957991731239159911 ~2009
86563939791731278795911 ~2009
865679386934627175476112 ~2012
Home
5.157.210 digits
e-mail
25-11-02