Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
209885376594197707531911 ~2012
209891906994197838139911 ~2012
2098954462112593726772712 ~2013
2099117905920991179059112 ~2013
209914441194198288823911 ~2012
2099172607312595035643912 ~2013
209932153434198643068711 ~2012
209952174234199043484711 ~2012
209959429914199188598311 ~2012
2099600448112597602688712 ~2013
209961422394199228447911 ~2012
209967513714199350274311 ~2012
2099874816112599248896712 ~2013
210006555234200131104711 ~2012
2100071032321000710323112 ~2013
210013337394200266747911 ~2012
2100201892716801615141712 ~2013
210028402194200568043911 ~2012
210034767594200695351911 ~2012
2100363319312602179915912 ~2013
210042907314200858146311 ~2012
210068592834201371856711 ~2012
2100706395137812715111912 ~2014
210071740434201434808711 ~2012
210098300634201966012711 ~2012
Exponent Prime Factor Dig. Year
210111656394202233127911 ~2012
210121534794202430695911 ~2012
2101431508116811452064912 ~2013
210146599314202931986311 ~2012
210152300634203046012711 ~2012
2101663927712609983566312 ~2013
210169798314203395966311 ~2012
2101896303712611377822312 ~2013
210189876834203797536711 ~2012
210192371394203847427911 ~2012
2102038941712612233650312 ~2013
210234014634204680292711 ~2012
210236994234204739884711 ~2012
210237454434204749088711 ~2012
2102528044716820224357712 ~2013
210261498834205229976711 ~2012
210261607914205232158311 ~2012
2102757019712616542118312 ~2013
210275891394205517827911 ~2012
210279942594205598851911 ~2012
2102900593921029005939112 ~2013
210295367394205907347911 ~2012
2103158681312618952087912 ~2013
210318909594206378191911 ~2012
210331842834206636856711 ~2012
Exponent Prime Factor Dig. Year
210333463194206669263911 ~2012
210334183914206683678311 ~2012
2103348865312620093191912 ~2013
210335800914206716018311 ~2012
2103515393312621092359912 ~2013
2103629685712621778114312 ~2013
210363518514207270370311 ~2012
210370092234207401844711 ~2012
210374162034207483240711 ~2012
210375361194207507223911 ~2012
210388641234207772824711 ~2012
2104003041121040030411112 ~2013
2104057513312624345079912 ~2013
210431981994208639639911 ~2012
2104462253916835698031312 ~2013
2104553719312627322315912 ~2013
210480139194209602783911 ~2012
210481410114209628202311 ~2012
210483711114209674222311 ~2012
210492262794209845255911 ~2012
210497910714209958214311 ~2012
210507853914210157078311 ~2012
210524771514210495430311 ~2012
210528321594210566431911 ~2012
210541733034210834660711 ~2012
Exponent Prime Factor Dig. Year
2105430828733686893259312 ~2014
2105436565312632619391912 ~2013
210546267114210925342311 ~2012
2105487687712632926126312 ~2013
2105714938737902868896712 ~2014
2105948911712635693470312 ~2013
210600939972729...82011314 2023
210608440194212168803911 ~2012
2106093733312636562399912 ~2013
210610159914212203198311 ~2012
210616002234212320044711 ~2012
210625838634212516772711 ~2012
210630419034212608380711 ~2012
2106328179712637969078312 ~2013
210634171914212683438311 ~2012
2106527347312639164083912 ~2013
2106552172163196565163112 ~2015
210684630234213692604711 ~2012
2106937813333711005012912 ~2014
210698176091011...45232114 2023
210730467834214609356711 ~2012
210730760394214615207911 ~2012
2107311219133716979505712 ~2014
210732941394214658827911 ~2012
210737211714214744234311 ~2012
Home
4.888.230 digits
e-mail
25-06-29