Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
112143330232242866604711 ~2010
112144758592242895171911 ~2010
112145485378971638829711 ~2011
112149019912242980398311 ~2010
112169474576730168474311 ~2011
1121718676311217186763112 ~2011
112174963192243499263911 ~2010
112180036312243600726311 ~2010
112181364592243627291911 ~2010
112182664432243653288711 ~2010
112184351992243687039911 ~2010
112184584792243691695911 ~2010
112187306512243746130311 ~2010
112188658912243773178311 ~2010
112193797333336...32594314 2025
112198202992243964059911 ~2010
112199133112243982662311 ~2010
112201810192244036203911 ~2010
112202780816732166848711 ~2011
1122053311911220533119112 ~2011
112211020312244220406311 ~2010
112211480512244229610311 ~2010
112212121432244242428711 ~2010
112213105432244262108711 ~2010
112216228312244324566311 ~2010
Exponent Prime Factor Dig. Year
112216316992244326339911 ~2010
112216620592244332411911 ~2010
112216833536733010011911 ~2011
112221625976733297558311 ~2011
112222951912244459038311 ~2010
112227549536733652971911 ~2011
1122284059715711976835912 ~2012
112232205778978576461711 ~2011
112233431512244668630311 ~2010
112235965216734157912711 ~2011
112240817632244816352711 ~2010
1122492120711224921207112 ~2011
112252607512245052150311 ~2010
112258719112245174382311 ~2010
112259505232245190104711 ~2010
112262789936735767395911 ~2011
112265019712245300394311 ~2010
112265479912245309598311 ~2010
112275604192245512083911 ~2010
112277096512245541930311 ~2010
1122983958117967743329712 ~2012
112301069632246021392711 ~2010
112302324176738139450311 ~2011
112304151592246083031911 ~2010
112315696312246313926311 ~2010
Exponent Prime Factor Dig. Year
1123178768915724502764712 ~2012
112324841992246496839911 ~2010
112328307832246566156711 ~2010
112329544432246590888711 ~2010
112330992112246619842311 ~2010
112331892832246637856711 ~2010
112337153998986972319311 ~2011
1123442297315728192162312 ~2012
112344551392246891027911 ~2010
112349580712246991614311 ~2010
112351167416741070044711 ~2011
112351508632247030172711 ~2010
112353136136741188167911 ~2011
112353962992247079259911 ~2010
112358224432247164488711 ~2010
112360043032247200860711 ~2010
112363045432247260908711 ~2010
112363130512247262610311 ~2010
112368307432247366148711 ~2010
112380924232247618484711 ~2010
112381954432247639088711 ~2010
112387607518991008600911 ~2011
112390524832247810496711 ~2010
112390722136743443327911 ~2011
1123921906726974125760912 ~2012
Exponent Prime Factor Dig. Year
1123928334717982853355312 ~2012
112393822792247876455911 ~2010
112396825432247936508711 ~2010
112397556712247951134311 ~2010
1124025225111240252251112 ~2011
112406163016744369780711 ~2011
1124079306124729744734312 ~2012
112408644712248172894311 ~2010
112412913112248258262311 ~2010
112422530632248450612711 ~2010
112425138536745508311911 ~2011
112426480312248529606311 ~2010
112428283912248565678311 ~2010
112428337432248566748711 ~2010
1124299441911242994419112 ~2011
112433707912248674158311 ~2010
112437050512248741010311 ~2010
112438747736746324863911 ~2011
1124496367911244963679112 ~2011
112450674898996053991311 ~2011
112455092512249101850311 ~2010
1124664215953983882363312 ~2013
1124713264311247132643112 ~2011
112476210178998096813711 ~2011
112489081198999126495311 ~2011
Home
5.037.460 digits
e-mail
25-09-07