Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
4013305493932106443951312 ~2015
401357639398027152787911 ~2014
401363888398027277767911 ~2014
401374686718027493734311 ~2014
401379881398027597627911 ~2014
401388073438027761468711 ~2014
401392903918027858078311 ~2014
401474157238029483144711 ~2014
4014847962764237567403312 ~2016
401505177238030103544711 ~2014
401513729038030274580711 ~2014
401533843438030676868711 ~2014
401544972838030899456711 ~2014
4015560484340155604843112 ~2016
4015635891140156358911112 ~2016
4015709818732125678549712 ~2015
401592078838031841576711 ~2014
4015936399940159363999112 ~2016
401620874038032417480711 ~2014
401662219198033244383911 ~2014
401684681998033693639911 ~2014
4017067658932136541271312 ~2015
401717426518034348530311 ~2014
401718104638034362092711 ~2014
401732511598034650231911 ~2014
Exponent Prime Factor Dig. Year
401747477518034949550311 ~2014
401758333918035166678311 ~2014
4018373682124110242092712 ~2015
401839819198036796383911 ~2014
4018618291724111709750312 ~2015
4018738140740187381407112 ~2016
4019064022124114384132712 ~2015
401915323438038306468711 ~2014
401936528398038730567911 ~2014
4019394374932155154999312 ~2015
4019657699932157261599312 ~2015
401973436198039468723911 ~2014
402008333398040166667911 ~2014
402030619198040612383911 ~2014
4020324173932162593391312 ~2015
402052759918041055198311 ~2014
402056010718041120214311 ~2014
402064809598041296191911 ~2014
402089121238041782424711 ~2014
402092076118041841522311 ~2014
4020967253932167738031312 ~2015
402100581838042011636711 ~2014
402116473798042329475911 ~2014
4021186975724127121854312 ~2015
402131210998042624219911 ~2014
Exponent Prime Factor Dig. Year
402135764398042715287911 ~2014
4021734920956304288892712 ~2016
402192001798043840035911 ~2014
402202286638044045732711 ~2014
402209172838044183456711 ~2014
4022109286732176874293712 ~2015
402249643798044992875911 ~2014
402273283318045465666311 ~2014
402283142398045662847911 ~2014
402289467598045789351911 ~2014
402301412998046028259911 ~2014
402308535118046170702311 ~2014
4023390155324140340931912 ~2015
4023419005724140514034312 ~2015
4023522663764376362619312 ~2016
4023786679132190293432912 ~2015
402406023598048120471911 ~2014
4024360785724146164714312 ~2015
402436572718048731454311 ~2014
4024795543724148773262312 ~2015
4024851949972447335098312 ~2016
402500658118050013162311 ~2014
402516458518050329170311 ~2014
402584737918051694758311 ~2014
402591559918051831198311 ~2014
Exponent Prime Factor Dig. Year
402600042598052000851911 ~2014
402616219198052324383911 ~2014
402637126918052742538311 ~2014
402648572038052971440711 ~2014
4027046677724162280066312 ~2015
402715912318054318246311 ~2014
402727369798054547395911 ~2014
402728792038054575840711 ~2014
4027460247724164761486312 ~2015
402791363518055827270311 ~2014
4028145487724168872926312 ~2015
402826614118056532282311 ~2014
402835728598056714571911 ~2014
4028560396132228483168912 ~2015
4028576965132228615720912 ~2015
4028611105132228888840912 ~2015
402868793518057375870311 ~2014
4029052034932232416279312 ~2015
402917580118058351602311 ~2014
4029242628124175455768712 ~2015
4029465700340294657003112 ~2016
4029557155324177342931912 ~2015
4029790807132238326456912 ~2015
402992505838059850116711 ~2014
403013145838060262916711 ~2014
Home
4.724.182 digits
e-mail
25-04-13