Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
279242368435584847368711 ~2013
279242851315584857026311 ~2013
2792720867967025300829712 ~2015
279272984995585459699911 ~2013
279275419915585508398311 ~2013
279279657115585593142311 ~2013
279306370195586127403911 ~2013
2793171106116759026636712 ~2014
279323316595586466331911 ~2013
279348553915586971078311 ~2013
2793568177316761409063912 ~2014
279376811995587536239911 ~2013
279393003595587860071911 ~2013
279397721035587954420711 ~2013
2794007000367056168007312 ~2015
279405599035588111980711 ~2013
279434394835588687896711 ~2013
279435853915588717078311 ~2013
279442643395588852867911 ~2013
279451653235589033064711 ~2013
279471925435589438508711 ~2013
279480774715589615494311 ~2013
2795428849122363430792912 ~2014
2795560300344728964804912 ~2015
279559572595591191451911 ~2013
Exponent Prime Factor Dig. Year
2795680749150322253483912 ~2015
279583791595591675831911 ~2013
279594996115591899922311 ~2013
279626886235592537724711 ~2013
2796472804722371782437712 ~2014
279650425435593008508711 ~2013
279655031035593100620711 ~2013
279670373035593407460711 ~2013
279671540515593430810311 ~2013
2796861471150343506479912 ~2015
279695343715593906874311 ~2013
279700418395594008367911 ~2013
279705720235594114404711 ~2013
2797227976116783367856712 ~2014
279725280115594505602311 ~2013
279737043835594740876711 ~2013
2797636230116785817380712 ~2014
279772070995595441419911 ~2013
279773989315595479786311 ~2013
279793890235595877804711 ~2013
2798081713316788490279912 ~2014
2798097214116788583284712 ~2014
279820779235596415584711 ~2013
279836525635596730512711 ~2013
279860982235597219644711 ~2013
Exponent Prime Factor Dig. Year
279863912635597278252711 ~2013
279866927635597338552711 ~2013
279910126915598202538311 ~2013
279944866315598897326311 ~2013
2799466164116796796984712 ~2014
2799543639744792698235312 ~2015
279967548235599350964711 ~2013
280004216995600084339911 ~2013
280023500395600470007911 ~2013
280027573195600551463911 ~2013
2800335085316802010511912 ~2014
280038946795600778935911 ~2013
280040716435600814328711 ~2013
280043451115600869022311 ~2013
280079645035601592900711 ~2013
2800872430122406979440912 ~2014
2800940656328009406563112 ~2014
280094738515601894770311 ~2013
2801458972722411671781712 ~2014
280163255635603265112711 ~2013
280167295195603345903911 ~2013
280180646035603612920711 ~2013
280184173795603683475911 ~2013
2801976252116811857512712 ~2014
280205642635604112852711 ~2013
Exponent Prime Factor Dig. Year
2802063547344833016756912 ~2015
2802079965744833279451312 ~2015
280218755515604375110311 ~2013
280234000435604680008711 ~2013
280242814795604856295911 ~2013
280252744795605054895911 ~2013
2802604810122420838480912 ~2014
280262941195605258823911 ~2013
2802711103722421688829712 ~2014
2803159078116818954468712 ~2014
280329579835606591596711 ~2013
280341524035606830480711 ~2013
2803433055716820598334312 ~2014
2803615699950465082598312 ~2015
280362246595607244931911 ~2013
280370629795607412595911 ~2013
2803879504116823277024712 ~2014
280396041115607920822311 ~2013
2804117098750474107776712 ~2015
280434530995608690619911 ~2013
2804450453922435603631312 ~2014
280454395315609087906311 ~2013
280470606595609412131911 ~2013
280481715595609634311911 ~2013
2804952730116829716380712 ~2014
Home
4.724.182 digits
e-mail
25-04-13