Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1645546918162530782887912 ~2014
1645595041713164760333712 ~2012
164567907833291358156711 ~2011
164582846513291656930311 ~2011
164586731033291734620711 ~2011
164591001593291820031911 ~2011
1645974173323043638426312 ~2013
164603291393292065827911 ~2011
164606289233292125784711 ~2011
164611498433292229968711 ~2011
1646210312913169682503312 ~2012
1646310547929633589862312 ~2013
164643502193292870043911 ~2011
164650790419879047424711 ~2012
1646580904936224779907912 ~2013
164676956633293539132711 ~2011
1646771514165870860564112 ~2014
164686821233293736424711 ~2011
164691473993293829479911 ~2011
164696994233293939884711 ~2011
164703228593294064571911 ~2011
164704846313294096926311 ~2011
164707992593294159851911 ~2011
1647083991116470839911112 ~2013
164712590993294251819911 ~2011
Exponent Prime Factor Dig. Year
164735952233294719044711 ~2011
164737236593294744731911 ~2011
164747199538474...43823314 2023
1647590859749427725791112 ~2014
164767907633295358152711 ~2011
164775170513295503410311 ~2011
164781014579886860874311 ~2012
164787018019887221080711 ~2012
164797865393295957307911 ~2011
164798743313295974866311 ~2011
164801776913296035538311 ~2011
1648154744923074166428712 ~2013
164819625593296392511911 ~2011
164832098393296641967911 ~2011
164836199633296723992711 ~2011
164849415593296988311911 ~2011
164850629393297012587911 ~2011
164850902633297018052711 ~2011
164859440097698...52203114 2025
164873942513297478850311 ~2011
164874711113297494222311 ~2011
1648860004713190880037712 ~2012
164896461713297929234311 ~2011
164915221219894913272711 ~2012
164916015833298320316711 ~2011
Exponent Prime Factor Dig. Year
164916643793298332875911 ~2011
164920310633298406212711 ~2011
164923299233298465984711 ~2011
164936202113298724042311 ~2011
1649415089913195320719312 ~2012
164942379113298847582311 ~2011
1649497630713195981045712 ~2012
164950951433299019028711 ~2011
164969872313299397446311 ~2011
1649717728365988709132112 ~2014
164972416793299448335911 ~2011
164974508579898470514311 ~2012
164980038593299600771911 ~2011
164980107019898806420711 ~2012
164988387113299767742311 ~2011
164988438113299768762311 ~2011
1650006747726400107963312 ~2013
165008796833300175936711 ~2011
165013047171316...16416714 2023
165014988833300299776711 ~2011
165021601313300432026311 ~2011
165027994313300559886311 ~2011
165030516113300610322311 ~2011
165031143113300622862311 ~2011
1650402517113203220136912 ~2012
Exponent Prime Factor Dig. Year
165049315193300986303911 ~2011
165060795113301215902311 ~2011
165061310393301226207911 ~2011
165062411779903744706311 ~2012
165083515019905010900711 ~2012
165084986633301699732711 ~2011
165087934433301758688711 ~2011
165088367339905302039911 ~2012
165092418233301848364711 ~2011
165096137513301922750311 ~2011
165096938993301938779911 ~2011
165100176739906010603911 ~2012
165103112633302062252711 ~2011
1651055623929719001230312 ~2013
165106151819906369108711 ~2012
165107681993302153639911 ~2011
165109405313302188106311 ~2011
165116201993302324039911 ~2011
165119915393302398307911 ~2011
165127767713302555354311 ~2011
165137030993302740619911 ~2011
165138688793302773775911 ~2011
165139556779908373406311 ~2012
165141055193302821103911 ~2011
165143843033302876860711 ~2011
Home
4.888.230 digits
e-mail
25-06-29