Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
85500201831710004036711 ~2009
85509840831710196816711 ~2009
85511726391710234527911 ~2009
85513423911710268478311 ~2009
85513762191710275243911 ~2009
85519104476841528357711 ~2010
85519450975131167058311 ~2010
85524446391710488927911 ~2009
85525340216842027216911 ~2010
85528408676842272693711 ~2010
85529133711710582674311 ~2009
85532953016842636240911 ~2010
85534714135132082847911 ~2010
85537408311710748166311 ~2009
85538231215132293872711 ~2010
85545027831710900556711 ~2009
85546538511710930770311 ~2009
855492394313687878308912 ~2011
85550047135133002827911 ~2010
85551252831711025056711 ~2009
85557178735133430723911 ~2010
85558560735133513643911 ~2010
85559327391711186547911 ~2009
85565212791711304255911 ~2009
85565394831711307896711 ~2009
Exponent Prime Factor Dig. Year
85565856591711317131911 ~2009
85568546991711370939911 ~2009
85570025335134201519911 ~2010
855720088920537282133712 ~2011
85574882815134492968711 ~2010
85575398391711507967911 ~2009
85575485991711509719911 ~2009
85577168511711543370311 ~2009
85590612078559061207111 ~2010
85592811231711856224711 ~2009
85592827015135569620711 ~2010
85592847591711856951911 ~2009
85596339415135780364711 ~2010
856006905149648400495912 ~2012
85601721231712034424711 ~2009
85615553996849244319311 ~2010
85623218631712464372711 ~2009
85624772511712495450311 ~2009
85628595735137715743911 ~2010
85636039311712720786311 ~2009
856424245115415636411912 ~2011
85646212911712924258311 ~2009
85652036391713040727911 ~2009
85653160431713063208711 ~2009
85657685511713153710311 ~2009
Exponent Prime Factor Dig. Year
85658287311713165746311 ~2009
85660970511713219410311 ~2009
856618330920558839941712 ~2011
85668777831713375556711 ~2009
85670301831713406036711 ~2009
85671814311713436286311 ~2009
856746808313707948932912 ~2011
85677202791713544055911 ~2009
85680689031713613780711 ~2009
85683479991713669599911 ~2009
85685953676854876293711 ~2010
85690929975141455798311 ~2010
856974365311997641114312 ~2011
85707270591714145411911 ~2009
85711929476856954357711 ~2010
85712231815142733908711 ~2010
85712306391714246127911 ~2009
857151739915428731318312 ~2011
85719589191714391783911 ~2009
85719692276857575381711 ~2010
85719864111714397282311 ~2009
85722277311714445546311 ~2009
857256011927432192380912 ~2012
85729818831714596376711 ~2009
85731586311714631726311 ~2009
Exponent Prime Factor Dig. Year
85733036631714660732711 ~2009
85734327711714686554311 ~2009
85734478191714689563911 ~2009
85735319031714706380711 ~2009
85736044911714720898311 ~2009
85738298391714765967911 ~2009
85750414815145024888711 ~2010
85750906311715018126311 ~2009
857513812320580331495312 ~2011
85752707511715054150311 ~2009
85758811518575881151111 ~2010
85767366535146041991911 ~2010
85769388231715387764711 ~2009
85770501591715410031911 ~2009
85771968711715439374311 ~2009
85772358711715447174311 ~2009
85776910431715538208711 ~2009
85783473015147008380711 ~2010
85783773231715675464711 ~2009
85791013791715820275911 ~2009
85792431116863394488911 ~2010
857934036118874548794312 ~2011
85798479615147908776711 ~2010
85801304511716026090311 ~2009
85801775031716035500711 ~2009
Home
5.157.210 digits
e-mail
25-11-02