Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
232881343794657626875911 ~2012
2328923020337262768324912 ~2014
232898697834657973956711 ~2012
232925612514658512250311 ~2012
232926947394658538947911 ~2012
232938119034658762380711 ~2012
232943019234658860384711 ~2012
232943167194658863343911 ~2012
232953604794659072095911 ~2012
232959022194659180443911 ~2012
232963416114659268322311 ~2012
232976705514659534110311 ~2012
232984793394659695867911 ~2012
232988078034659761560711 ~2012
232990919514659818390311 ~2012
233001159114660023182311 ~2012
233013714594660274291911 ~2012
2330234857713981409146312 ~2013
233024697834660493956711 ~2012
233027260194660545203911 ~2012
2330456400113982738400712 ~2013
233051425194661028503911 ~2012
233051435394661028707911 ~2012
233054997714661099954311 ~2012
2330617437123306174371112 ~2014
Exponent Prime Factor Dig. Year
2330640389313983842335912 ~2013
233070773034661415460711 ~2012
233071704234661434084711 ~2012
233097811794661956235911 ~2012
233101839834662036796711 ~2012
2331063161313986378967912 ~2013
233112897234662257944711 ~2012
2331134893718649079149712 ~2013
233113831434662276628711 ~2012
2331308017718650464141712 ~2013
233150581914663011638311 ~2012
2331553049313989318295912 ~2013
233156521794663130435911 ~2012
233177086794663541735911 ~2012
2331887958137310207329712 ~2014
2331908957918655271663312 ~2013
233195656794663913135911 ~2012
2331989749923319897499112 ~2014
233231887194664637743911 ~2012
233242031634664840632711 ~2012
233245215234664904304711 ~2012
233258227434665164548711 ~2012
233270195634665403912711 ~2012
2332909022918663272183312 ~2013
233345322114666906442311 ~2012
Exponent Prime Factor Dig. Year
2333455260114000731560712 ~2013
233355716634667114332711 ~2012
233356200234667124004711 ~2012
233385251394667705027911 ~2012
233399355234667987104711 ~2012
2333998929737343982875312 ~2014
2334078239314004469435912 ~2013
233413529994668270599911 ~2012
233413995834668279916711 ~2012
2334288411123342884111112 ~2014
233432125314668642506311 ~2012
2334424480956026187541712 ~2015
233468766594669375331911 ~2012
233486890794669737815911 ~2012
2335233235714011399414312 ~2013
233532602634670652052711 ~2012
2335348447118682787576912 ~2013
233538429234670768584711 ~2012
233539942914670798858311 ~2012
2335515127714013090766312 ~2013
233560155834671203116711 ~2012
233571955914671439118311 ~2012
233575231314671504626311 ~2012
233579442714671588854311 ~2012
233586498834671729976711 ~2012
Exponent Prime Factor Dig. Year
233592210714671844214311 ~2012
233598696714671973934311 ~2012
233609685834672193716711 ~2012
233616749514672334990311 ~2012
233630723394672614467911 ~2012
233634275994672685519911 ~2012
233646529314672930586311 ~2012
233657171634673143432711 ~2012
233657194314673143886311 ~2012
2336638279718693106237712 ~2013
233672297514673445950311 ~2012
233673023034673460460711 ~2012
233703587514674071750311 ~2012
2337053708918696429671312 ~2013
2337250906718698007253712 ~2013
233727401034674548020711 ~2012
233728878834674577576711 ~2012
2337331423314023988539912 ~2013
233742744714674854894311 ~2012
2337453355118699626840912 ~2013
2337581955714025491734312 ~2013
2337621785314025730711912 ~2013
2337762980918702103847312 ~2013
233793616194675872323911 ~2012
233801749434676034988711 ~2012
Home
4.724.182 digits
e-mail
25-04-13