Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
182126395793642527915911 ~2011
1821322207310927933243912 ~2012
182135589833642711796711 ~2011
182136744113642734882311 ~2011
182142573113642851462311 ~2011
182160659511096...70250314 2023
1821607279310929643675912 ~2012
182163732113643274642311 ~2011
1821685783710930114702312 ~2012
182173335833643466716711 ~2011
182174049113643480982311 ~2011
182174587193643491743911 ~2011
1821965557725507517807912 ~2013
182201159513644023190311 ~2011
182201473913644029478311 ~2011
182206552313644131046311 ~2011
1822115814718221158147112 ~2013
1822152433310932914599912 ~2012
182250389393645007787911 ~2011
182250950993645019019911 ~2011
1822646561325517051858312 ~2013
1822834777710937008666312 ~2012
1822857571132811436279912 ~2013
182294728433645894568711 ~2011
1822971691725521603683912 ~2013
Exponent Prime Factor Dig. Year
182298290993645965819911 ~2011
182305573433646111468711 ~2011
182312609513646252190311 ~2011
182314473233646289464711 ~2011
1823171794318231717943112 ~2013
182325459113646509182311 ~2011
182328647393646572947911 ~2011
1823288219343758917263312 ~2014
182340786233646815724711 ~2011
182347053833646941076711 ~2011
1823507386714588059093712 ~2013
182356968593647139371911 ~2011
1823662105710941972634312 ~2012
182371570193647431403911 ~2011
182376219593647524391911 ~2011
182384703113647694062311 ~2011
182385797393647715947911 ~2011
182387909033647758180711 ~2011
182389102433647782048711 ~2011
1823911369932830404658312 ~2013
182391575393647831507911 ~2011
1823924278714591394229712 ~2013
1824277195714594217565712 ~2013
182431191233648623824711 ~2011
182434811033648696220711 ~2011
Exponent Prime Factor Dig. Year
182442254513648845090311 ~2011
1824438139918244381399112 ~2013
1824523756114596190048912 ~2013
182467115993649342319911 ~2011
1824734311114597874488912 ~2013
182475728513649514570311 ~2011
182483663033649673260711 ~2011
182494322513649886450311 ~2011
182503880993650077619911 ~2011
1825052139743801251352912 ~2014
1825102156714600817253712 ~2013
182510440433650208808711 ~2011
182515440113650308802311 ~2011
182516863313650337266311 ~2011
1825227665914601821327312 ~2013
1825246607325553452502312 ~2013
182544419633650888392711 ~2011
182545142513650902850311 ~2011
182555416313651108326311 ~2011
1825561147710953366886312 ~2012
182566140113651322802311 ~2011
1825755439710954532638312 ~2012
182577060113651541202311 ~2011
182577930833651558616711 ~2011
182583018113651660362311 ~2011
Exponent Prime Factor Dig. Year
182583914993651678299911 ~2011
182588225033651764500711 ~2011
182597023193651940463911 ~2011
182602360313652047206311 ~2011
1826136998376697753928712 ~2014
182621422313652428446311 ~2011
182626300313652526006311 ~2011
182628634671932...54808714 2023
1826317470110957904820712 ~2012
182640391793652807835911 ~2011
182640779633652815592711 ~2011
182642022833652840456711 ~2011
182642664833652853296711 ~2011
182648578433652971568711 ~2011
182653821233653076424711 ~2011
1826630850718266308507112 ~2013
1826757896925574610556712 ~2013
182677167233653543344711 ~2011
1826812312318268123123112 ~2013
182681646713653632934311 ~2011
1826920160914615361287312 ~2013
182708356193654167123911 ~2011
182712737393654254747911 ~2011
182713566833654271336711 ~2011
182727736193654554723911 ~2011
Home
4.724.182 digits
e-mail
25-04-13