Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
233826862794676537255911 ~2012
2338339795714030038774312 ~2013
233840043834676800876711 ~2012
233845600194676912003911 ~2012
2338473259718707786077712 ~2013
233854194114677083882311 ~2012
233872026234677440524711 ~2012
233877665994677553319911 ~2012
233878825794677576515911 ~2012
2338878270723388782707112 ~2014
233896360794677927215911 ~2012
233905812234678116244711 ~2012
233912122194678242443911 ~2012
233920761594678415231911 ~2012
233928471714678569434311 ~2012
2339518282118716146256912 ~2013
233959807914679196158311 ~2012
233960890434679217808711 ~2012
233981555634679631112711 ~2012
2339841841314039051047912 ~2013
2340056965314040341791912 ~2013
234033775794680675515911 ~2012
234036669594680733391911 ~2012
2340559067942130063222312 ~2014
2340569717314043418303912 ~2013
Exponent Prime Factor Dig. Year
2340625183314043751099912 ~2013
234079694994681593899911 ~2012
2340796980114044781880712 ~2013
2340813985714044883914312 ~2013
234082024914681640498311 ~2012
234086781594681735631911 ~2012
234098620434681972408711 ~2012
234103256994682065139911 ~2012
234103392594682067851911 ~2012
234111256914682225138311 ~2012
234114100194682282003911 ~2012
2341158319718729266557712 ~2013
234118215234682364304711 ~2012
234133236834682664736711 ~2012
2341343511714048061070312 ~2013
2341379704114048278224712 ~2013
2341479775314048878651912 ~2013
234151160994683023219911 ~2012
2341677059918733416479312 ~2013
234174545034683490900711 ~2012
234184273794683685475911 ~2012
234207604794684152095911 ~2012
234217603914684352078311 ~2012
234220676994684413539911 ~2012
234251280114685025602311 ~2012
Exponent Prime Factor Dig. Year
234256353714685127074311 ~2012
234261554514685231090311 ~2012
234268989834685379796711 ~2012
2342892721732800498103912 ~2014
234327168234686543364711 ~2012
234328957794686579155911 ~2012
234338028234686760564711 ~2012
234339338514686786770311 ~2012
234350497194687009943911 ~2012
234350744994687014899911 ~2012
234356697594687133951911 ~2012
234378856314687577126311 ~2012
2343816427314062898563912 ~2013
234387274194687745483911 ~2012
234400897794688017955911 ~2012
234404774514688095490311 ~2012
234407602794688152055911 ~2012
2344085193714064511162312 ~2013
234409359234688187184711 ~2012
234421439514688428790311 ~2012
234428679234688573584711 ~2012
234442879314688857586311 ~2012
2344505260114067031560712 ~2013
2344748940742205480932712 ~2014
2344756652918758053223312 ~2013
Exponent Prime Factor Dig. Year
2344822680114068936080712 ~2013
2344869183714069215102312 ~2013
2345078366918760626935312 ~2013
2345082167918760657343312 ~2013
234516075834690321516711 ~2012
234516094794690321895911 ~2012
2345257127314071542763912 ~2013
234540854394690817087911 ~2012
234567037492228...56155114 2024
234586939434691738788711 ~2012
234642099114692841982311 ~2012
234642530634692850612711 ~2012
2346484142956315619429712 ~2015
234649174914692983498311 ~2012
234658609914693172198311 ~2012
2346589555923465895559112 ~2014
234661264194693225283911 ~2012
234666947634693338952711 ~2012
234675184914693503698311 ~2012
234683747394693674947911 ~2012
234691649034693832980711 ~2012
2346993688356327848519312 ~2015
234713270034694265400711 ~2012
234731126994694622539911 ~2012
2347324837718778598701712 ~2013
Home
4.724.182 digits
e-mail
25-04-13