Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
56264148831125282976711 ~2007
56267985795626798579111 ~2009
56270009991125400199911 ~2007
56270860674501668853711 ~2009
56274738111125494762311 ~2007
56277549711125550994311 ~2007
56277641511125552830311 ~2007
56279901114502392088911 ~2009
56282995911125659918311 ~2007
56284261191125685223911 ~2007
56284526631125690532711 ~2007
56285783094502862647311 ~2009
56286088133377165287911 ~2008
56286407097880096992711 ~2009
56287229991125744599911 ~2007
56290084911125801698311 ~2007
562912168927019784107312 ~2011
56293010631125860212711 ~2007
56298615619007778497711 ~2009
56299294791125985895911 ~2007
56303495631126069912711 ~2007
56304519231126090384711 ~2007
56304906111126098122311 ~2007
56308004631126160092711 ~2007
56311473831126229476711 ~2007
Exponent Prime Factor Dig. Year
56317203714505376296911 ~2009
56317771431126355428711 ~2007
56318304111126366082311 ~2007
56318477511126369550311 ~2007
56322027111126440542311 ~2007
56322853431126457068711 ~2007
56324683791126493675911 ~2007
56324719311126494386311 ~2007
56325320333379519219911 ~2008
56327251791126545035911 ~2007
56329877933379792675911 ~2008
56330083074506406645711 ~2009
56332786973379967218311 ~2008
56337408111126748162311 ~2007
56338999674507119973711 ~2009
56340097911126801958311 ~2007
563430367910141746622312 ~2010
56343257573380595454311 ~2008
56344247511126884950311 ~2007
56346531973380791918311 ~2008
56347721511126954430311 ~2007
56349442791126988855911 ~2007
56351439711127028794311 ~2007
56351452311127029046311 ~2007
56356116773381367006311 ~2008
Exponent Prime Factor Dig. Year
56359613991127192279911 ~2007
56361098631127221972711 ~2007
56361620874508929669711 ~2009
56363559711127271194311 ~2007
56363991231127279824711 ~2007
56364633831127292676711 ~2007
56366127591127322551911 ~2007
56366610594509328847311 ~2009
56371073511127421470311 ~2007
56372729511127454590311 ~2007
56373675591127473511911 ~2007
56374136094509930887311 ~2009
56375434339020069492911 ~2009
56375703711127514074311 ~2007
56376679431127533588711 ~2007
56378625435637862543111 ~2009
56378883231127577664711 ~2007
56379208373382752502311 ~2008
56379434391127588687911 ~2007
56379912231127598244711 ~2007
563801752913531242069712 ~2010
56381560911127631218311 ~2007
56382714114510617128911 ~2009
56382952133382977127911 ~2008
56383047831127660956711 ~2007
Exponent Prime Factor Dig. Year
56383671294510693703311 ~2009
56383876333383032579911 ~2008
56385650991127713019911 ~2007
56387482395638748239111 ~2009
56387756991127755139911 ~2007
56387767791127755355911 ~2007
56388508791127770175911 ~2007
56390096991127801939911 ~2007
56390869939022539188911 ~2009
56392551774511404141711 ~2009
56393643711127872874311 ~2007
563942542710150965768712 ~2010
56394293514511543480911 ~2009
563948432913534762389712 ~2010
56396291394511703311311 ~2009
56396465333383787919911 ~2008
56400130311128002606311 ~2007
56403946191128078923911 ~2007
56404065111128081302311 ~2007
564065701913537576845712 ~2010
56408462511128169250311 ~2007
56409174231128183484711 ~2007
56409884991128197699911 ~2007
56411219031128224380711 ~2007
56411834031128236680711 ~2007
Home
5.157.210 digits
e-mail
25-11-02