Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1612364573912898916591312 ~2012
161237310593224746211911 ~2011
161239144193224782883911 ~2011
161251612193225032243911 ~2011
161259740993225194819911 ~2011
161265245033225304900711 ~2011
161269025633225380512711 ~2011
161272791593225455831911 ~2011
161272949419676376964711 ~2012
161273552033225471040711 ~2011
161274969419676498164711 ~2012
1612794089338707058143312 ~2013
161284896833225697936711 ~2011
161289925219677395512711 ~2012
161293446593225868931911 ~2011
161297091619677825496711 ~2012
161299953833225999076711 ~2011
161318160233226363204711 ~2011
161338679033226773580711 ~2011
161339971579680398294311 ~2012
161339982713226799654311 ~2011
161350479619681028776711 ~2012
161354223713227084474311 ~2011
161355444593227108891911 ~2011
161358736193227174723911 ~2011
Exponent Prime Factor Dig. Year
1613622505177453880244912 ~2014
161369894993227397899911 ~2011
161372184113227443682311 ~2011
1613755013912910040111312 ~2012
161376334619682580076711 ~2012
161376827033227536540711 ~2011
1613813281722593385943912 ~2013
1613853592935504779043912 ~2013
161390268113227805362311 ~2011
161390483513227809670311 ~2011
161391039233227820784711 ~2011
161401024313228020486311 ~2011
161406374513228127490311 ~2011
161412973913228259478311 ~2011
1614157891929054842054312 ~2013
161415975539684958531911 ~2012
161431520419685891224711 ~2012
161434221113228684422311 ~2011
161435579993228711599911 ~2011
161439599393228791987911 ~2011
161440211393228804227911 ~2011
161440553513228811070311 ~2011
1614432352338746376455312 ~2013
161445870019686752200711 ~2012
161446815233228936304711 ~2011
Exponent Prime Factor Dig. Year
161450897393229017947911 ~2011
161451579113229031582311 ~2011
161452493393229049867911 ~2011
161457334793229146695911 ~2011
161458848713229176974311 ~2011
1614628963335521837192712 ~2013
161474382713229487654311 ~2011
161479489913229589798311 ~2011
1614891030716148910307112 ~2012
161489244713229784894311 ~2011
161489503793229790075911 ~2011
161490399713229807994311 ~2011
161492119433229842388711 ~2011
161497523033229950460711 ~2011
161512990913230259818311 ~2011
161524580539691474831911 ~2012
161530395593230607911911 ~2011
161535986633230719732711 ~2011
161547702833230954056711 ~2011
161553365579693201934311 ~2012
161556611393231132227911 ~2011
161563820179693829210311 ~2012
161568501593231370031911 ~2011
161583111593231662231911 ~2011
161585863193231717263911 ~2011
Exponent Prime Factor Dig. Year
161586789233231735784711 ~2011
161587393193231747863911 ~2011
161592808433231856168711 ~2011
1615935777116159357771112 ~2012
161600605313232012106311 ~2011
161601072833232021456711 ~2011
1616038552354945310778312 ~2014
161619887633232397752711 ~2011
161629461833232589236711 ~2011
161633249219697994952711 ~2012
161634509033232690180711 ~2011
161638169393232763387911 ~2011
1616471638712931773109712 ~2012
1616598649712932789197712 ~2012
161667365579700041934311 ~2012
161668049633233360992711 ~2011
1616713675916167136759112 ~2012
1617046213112936369704912 ~2012
161711223233234224464711 ~2011
161743908539704634511911 ~2012
1617568060112940544480912 ~2012
161760387833235207756711 ~2011
161785634633235712692711 ~2011
161790637313235812746311 ~2011
161791167713235823354311 ~2011
Home
4.724.182 digits
e-mail
25-04-13