Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
153476758819208605528711 ~2012
1534778272112278226176912 ~2012
1534836742727627061368712 ~2013
153490872233069817444711 ~2011
153493698379209621902311 ~2012
153496282793069925655911 ~2011
153500190113070003802311 ~2011
153510016379210600982311 ~2012
153510572033070211440711 ~2011
153514788713070295774311 ~2011
153519502793070390055911 ~2011
153525942593070518851911 ~2011
153529720913070594418311 ~2011
1535379511112283036088912 ~2012
153544413833070888276711 ~2011
153555358313071107166311 ~2011
153562653779213759226311 ~2012
153562878713071257574311 ~2011
153565910219213954612711 ~2012
153573090833071461816711 ~2011
1535800936324572814980912 ~2013
153584892713071697854311 ~2011
153592342793071846855911 ~2011
153594936833071898736711 ~2011
153596699993071933999911 ~2011
Exponent Prime Factor Dig. Year
153604997993072099959911 ~2011
1536124771112288998168912 ~2012
153627972593072559451911 ~2011
1536314929721508409015912 ~2013
153635614313072712286311 ~2011
153639763193072795263911 ~2011
153649064393072981287911 ~2011
153656445833073128916711 ~2011
153656936633073138732711 ~2011
1536613880336878733127312 ~2013
153667776593073355531911 ~2011
1536788112715367881127112 ~2012
153680835833073616716711 ~2011
153682748513073654970311 ~2011
1536881704712295053637712 ~2012
153695828033073916560711 ~2011
153702377339222142639911 ~2012
153705722939222343375911 ~2012
1537116727112296933816912 ~2012
1537135363915371353639112 ~2012
153714332513074286650311 ~2011
153714350993074287019911 ~2011
153715326233074306524711 ~2011
153721447793074428955911 ~2011
153728289833074565796711 ~2011
Exponent Prime Factor Dig. Year
153743932619224635956711 ~2012
153759867713075197354311 ~2011
1537659835721527237699912 ~2013
153771658193075433163911 ~2011
153774535193075490703911 ~2011
153777290993075545819911 ~2011
153779105633075582112711 ~2011
153783609113075672182311 ~2011
1537890805927682034506312 ~2013
1537944036124607104577712 ~2013
1537957411712303659293712 ~2012
1537967472124607479553712 ~2013
153805238539228314311911 ~2012
153806595739228395743911 ~2012
153813293939228797635911 ~2012
153813523913076270478311 ~2011
153814117193076282343911 ~2011
153815824793076316495911 ~2011
153818891291353...43352114 2023
153819702233076394044711 ~2011
153829244993076584899911 ~2011
153834532433076690648711 ~2011
1538363166724613810667312 ~2013
153836634113076732682311 ~2011
153837991619230279496711 ~2012
Exponent Prime Factor Dig. Year
153838355579230301334311 ~2012
153839385539230363131911 ~2012
153850389833077007796711 ~2011
153851697713077033954311 ~2011
153856380833077127616711 ~2011
153856702313077134046311 ~2011
153864527513077290550311 ~2011
153867235433077344708711 ~2011
153876314393077526287911 ~2011
153882137513077642750311 ~2011
153882515339232950919911 ~2012
153890177393077803547911 ~2011
1539005478161560219124112 ~2014
1539094004921547316068712 ~2013
153909456779234567406311 ~2012
153909943793078198875911 ~2011
153911352139234681127911 ~2012
153913863593078277271911 ~2011
153925976393078519527911 ~2011
1539275107140021152784712 ~2013
153937664033078753280711 ~2011
153942249979236534998311 ~2012
1539440809712315526477712 ~2012
153959094113079181882311 ~2011
1539637568912317100551312 ~2012
Home
4.724.182 digits
e-mail
25-04-13