Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
169860950393397219007911 ~2011
169861832993397236659911 ~2011
169869414233397388284711 ~2011
169872501833397450036711 ~2011
169885924793397718495911 ~2011
1698867390767954695628112 ~2014
1698906529723784691415912 ~2013
169893002993397860059911 ~2011
169893353513397867070311 ~2011
1698956482940774955589712 ~2014
1699104181940778500365712 ~2014
1699126413127186022609712 ~2013
169930635233398612704711 ~2011
169938420233398768404711 ~2011
1699424893310196549359912 ~2012
169958326313399166526311 ~2011
1699640767113597126136912 ~2012
169977486713399549734311 ~2011
169988685593399773711911 ~2011
169997998793399959975911 ~2011
169998564113399971282311 ~2011
170001181193400023623911 ~2011
170011865993400237319911 ~2011
170017436513400348730311 ~2011
170019970793400399415911 ~2011
Exponent Prime Factor Dig. Year
170024958593400499171911 ~2011
170029473233400589464711 ~2011
170031661433400633228711 ~2011
170063659134703...11535914 2023
1700677097310204062583912 ~2012
1700683713710204102282312 ~2012
170073110633401462212711 ~2011
170073422513401468450311 ~2011
170077233113401544662311 ~2011
1700915790137420147382312 ~2013
170098601633401972032711 ~2011
170103225233402064504711 ~2011
170107078913402141578311 ~2011
170118676793402373535911 ~2011
170129124593402582491911 ~2011
170132975513402659510311 ~2011
170142521633402850432711 ~2011
170152217393403044347911 ~2011
170152933433403058668711 ~2011
170156842433403136848711 ~2011
170161555313403231106311 ~2011
170163232793403264655911 ~2011
1701708715144244426592712 ~2014
170174063033403481260711 ~2011
170175775433403515508711 ~2011
Exponent Prime Factor Dig. Year
1701857653940844583693712 ~2014
1701898235913615185887312 ~2012
1701918520110211511120712 ~2012
170205745313404114906311 ~2011
1702091550110212549300712 ~2012
1702190172727235042763312 ~2013
170220469913404409398311 ~2011
170224502393404490047911 ~2011
1702258104740854194512912 ~2014
170235965993404719319911 ~2011
170237706233404754124711 ~2011
170241873713404837474311 ~2011
170254591313405091826311 ~2011
170258413313405168266311 ~2011
1702596865327241549844912 ~2013
170260250633405205012711 ~2011
170268426113405368522311 ~2011
170271066833405421336711 ~2011
170271216233405424324711 ~2011
1702723789713621790317712 ~2012
170273420633405468412711 ~2011
1702801846327244829540912 ~2013
170290315313405806306311 ~2011
1702907716713623261733712 ~2012
170293191233405863824711 ~2011
Exponent Prime Factor Dig. Year
170327848433406556968711 ~2011
1703280442317032804423112 ~2013
170344992593406899851911 ~2011
170354802233407096044711 ~2011
1703678659710222071958312 ~2012
170374780193407495603911 ~2011
170381005313407620106311 ~2011
1703843877710223063266312 ~2012
170384525513407690510311 ~2011
170384544833407690896711 ~2011
170400416633408008332711 ~2011
170400982793408019655911 ~2011
170411770193408235403911 ~2011
1704184632110225107792712 ~2012
170433674993408673499911 ~2011
170435287313408705746311 ~2011
1704356527713634852221712 ~2012
170436038033408720760711 ~2011
170437644833408752896711 ~2011
1704494199710226965198312 ~2012
170458163633409163272711 ~2011
1704589279310227535675912 ~2012
170459860313409197206311 ~2011
170475630833409512616711 ~2011
1704822469113638579752912 ~2012
Home
4.724.182 digits
e-mail
25-04-13