Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
97078300615824698036711 ~2010
970823971923299775325712 ~2012
97088974791941779495911 ~2009
97094722311941894446311 ~2009
97096059597767684767311 ~2010
97101895791942037915911 ~2009
97102031031942040620711 ~2009
97105151631942103032711 ~2009
97106310711942126214311 ~2009
97108024677768641973711 ~2010
97110808377768864669711 ~2010
97118870511942377410311 ~2009
97118964231942379284711 ~2009
97122062719712206271111 ~2011
97128033231942560664711 ~2009
971314726746623106881712 ~2012
97133176431942663528711 ~2009
97134026415828041584711 ~2010
97135611831942712236711 ~2009
97136100175828166010311 ~2010
97136151117770892088911 ~2010
97136924511942738490311 ~2009
97140101991942802039911 ~2009
97148593311942971866311 ~2009
97151751111943035022311 ~2009
Exponent Prime Factor Dig. Year
97160901711943218034311 ~2009
97176747199717674719111 ~2011
97181626911943632538311 ~2009
97183518591943670371911 ~2009
97195488591943909771911 ~2009
97199812791943996255911 ~2009
97206819831944136396711 ~2009
97207682031944153640711 ~2009
97216503975832990238311 ~2010
97220317191944406343911 ~2009
97222352277777788181711 ~2010
97223599311944471986311 ~2009
972302306929169069207112 ~2012
97237492791944749855911 ~2009
97261073991945221479911 ~2009
97262053431945241068711 ~2009
97265384031945307680711 ~2009
97268133591945362671911 ~2009
97268560911945371218311 ~2009
97268576031945371520711 ~2009
97271289231945425784711 ~2009
97273556631945471132711 ~2009
97280610439728061043111 ~2011
97280698311945613966311 ~2009
97281114897782489191311 ~2010
Exponent Prime Factor Dig. Year
97282082511945641650311 ~2009
97282560777782604861711 ~2010
97283690991945673819911 ~2009
97297153215837829192711 ~2010
973014345744758659902312 ~2012
97306915077784553205711 ~2010
97311396231946227924711 ~2009
97314846111946296922311 ~2009
97315500711946310014311 ~2009
973181091117517259639912 ~2011
973207704129196231123112 ~2012
97321654791946433095911 ~2009
97324880631946497612711 ~2009
97325491191946509823911 ~2009
97332205311946644106311 ~2009
97334126217786730096911 ~2010
97335509511946710190311 ~2009
97337288391946745767911 ~2009
97346927391946938547911 ~2009
97349872017787989760911 ~2010
97355731191947114623911 ~2009
97358713911947174278311 ~2009
97369540791947390815911 ~2009
97369629711947392594311 ~2009
97369841335842190479911 ~2010
Exponent Prime Factor Dig. Year
97371804831947436096711 ~2009
97371868639737186863111 ~2011
97387666431947753328711 ~2009
973884207738955368308112 ~2012
97393652535843619151911 ~2010
97398487911947969758311 ~2009
974001012115584016193712 ~2011
974030866725324802534312 ~2012
97405222191948104443911 ~2009
97408617711948172354311 ~2009
97409355111948187102311 ~2009
97411947831948238956711 ~2009
97412724231948254484711 ~2009
97423300791948466015911 ~2009
97426279431948525588711 ~2009
97427647975845658878311 ~2010
97431811311948636226311 ~2009
97436219631948724392711 ~2009
97437391519743739151111 ~2011
974378474923385083397712 ~2012
97440903711948818074311 ~2009
97442992677795439413711 ~2010
97451236911949024738311 ~2009
97452110391949042207911 ~2009
97455098631949101972711 ~2009
Home
4.724.182 digits
e-mail
25-04-13