Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
64851722511297034450311 ~2008
64852716711297054334311 ~2008
64853125911297062518311 ~2008
64855468911297109378311 ~2008
64857233511297144670311 ~2008
64858788231297175764711 ~2008
648666532711675997588712 ~2010
64868344075189467525711 ~2009
64869825591297396511911 ~2008
64875640431297512808711 ~2008
64876823391297536467911 ~2008
64877606631297552132711 ~2008
64879586995190366959311 ~2009
64881072591297621451911 ~2008
64883605911297672118311 ~2008
64885943511297718870311 ~2008
64886825031297736500711 ~2008
64887662596488766259111 ~2009
64888266711297765334311 ~2008
64891338831297826776711 ~2008
64895023911297900478311 ~2008
64902867111298057342311 ~2008
64903480191298069603911 ~2008
64904500911298090018311 ~2008
64906720933894403255911 ~2009
Exponent Prime Factor Dig. Year
64908093591298161871911 ~2008
64908147231298162944711 ~2008
64909691391298193827911 ~2008
649101576129858672500712 ~2011
64911430191298228603911 ~2008
64911651173894699070311 ~2009
64913101911298262038311 ~2008
64913886711298277734311 ~2008
64914584815193166784911 ~2009
64916353431298327068711 ~2008
64917813111298356262311 ~2008
64917820911298356418311 ~2008
64920354013895221240711 ~2009
649216513310387464212912 ~2010
64922361231298447224711 ~2008
64926236533895574191911 ~2009
64927828675194226293711 ~2009
64933420213896005212711 ~2009
64933957933896037475911 ~2009
64935616311298712326311 ~2008
64937251911298745038311 ~2008
64937676115195014088911 ~2009
64942038231298840764711 ~2008
64943486991298869739911 ~2008
64944001375195520109711 ~2009
Exponent Prime Factor Dig. Year
64945341591298906831911 ~2008
64946676591298933531911 ~2008
64947774831298955496711 ~2008
64948325173896899510311 ~2009
64949331111298986622311 ~2008
64950119511299002390311 ~2008
649523065771447537227112 ~2012
64954108191299082163911 ~2008
64957200733897432043911 ~2009
64957673631299153472711 ~2008
64959250431299185008711 ~2008
64962113031299242260711 ~2008
64963228013897793680711 ~2009
64965654013897939240711 ~2009
64966109991299322199911 ~2008
64966472333897988339911 ~2009
64966612191299332243911 ~2008
64967025711299340514311 ~2008
64967969511299359390311 ~2008
64973700231299474004711 ~2008
64974071391299481427911 ~2008
64975025031299500500711 ~2008
64975081516497508151111 ~2009
64977116596497711659111 ~2009
64979387095198350967311 ~2009
Exponent Prime Factor Dig. Year
64980492231299609844711 ~2008
64980753415198460272911 ~2009
64983480111299669602311 ~2008
64983763311299675266311 ~2008
64984563373899073802311 ~2009
64984563831299691276711 ~2008
649848244322094840306312 ~2011
64984950711299699014311 ~2008
64985315116498531511111 ~2009
64985610711299712214311 ~2008
64986588111299731762311 ~2008
64988554311299771086311 ~2008
64990546311299810926311 ~2008
64994858031299897160711 ~2008
64994966511299899330311 ~2008
64995293391299905867911 ~2008
64997329191299946583911 ~2008
64998605813899916348711 ~2009
65001947511300038950311 ~2008
65003838591300076771911 ~2008
650065735719501972071112 ~2011
65008174191300163483911 ~2008
65010060591300201211911 ~2008
65010406613900624396711 ~2009
650126158310402018532912 ~2010
Home
4.888.230 digits
e-mail
25-06-29