Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
95748814191914976283911 ~2009
957495808922979899413712 ~2012
95751451791915029035911 ~2009
95753036031915060720711 ~2009
95754390111915087802311 ~2009
957549493917235890890312 ~2011
95755514775745330886311 ~2010
95765936815745956208711 ~2010
95766542991915330859911 ~2009
95767098615746025916711 ~2010
95768536191915370723911 ~2009
95771330575746279834311 ~2010
95776907991915538159911 ~2009
95778716031915574320711 ~2009
95779230111915584602311 ~2009
95787498711915749974311 ~2009
95788800711915776014311 ~2009
95796127815747767668711 ~2010
95796684711915933694311 ~2009
95797444311915948886311 ~2009
95801088711916021774311 ~2009
958049248961315151929712 ~2013
95805559311916111186311 ~2009
95806479111916129582311 ~2009
95810368639581036863111 ~2011
Exponent Prime Factor Dig. Year
95811515719581151571111 ~2011
95815598031916311960711 ~2009
958163232144075508676712 ~2012
95820604191916412083911 ~2009
95822502831916450056711 ~2009
95837752311916755046311 ~2009
958444794715335116715312 ~2011
95846661831916933236711 ~2009
95847229135750833747911 ~2010
958503193315336051092912 ~2011
95850587511917011750311 ~2009
95853030111917060602311 ~2009
95861407135751684427911 ~2010
95865057111917301142311 ~2009
95876699631917533992711 ~2009
95877826191917556523911 ~2009
95879308975752758538311 ~2010
95882206791917644135911 ~2009
95887635111917752702311 ~2009
95894336877671546949711 ~2010
95899338897671947111311 ~2010
95903852631918077052711 ~2009
95904763911918095278311 ~2009
95906922111918138442311 ~2009
95913261831918265236711 ~2009
Exponent Prime Factor Dig. Year
95914239831918284796711 ~2009
959149381117264688859912 ~2011
95917311415755038684711 ~2010
95918436711918368734311 ~2009
95918906775755134406311 ~2010
959282938724941356406312 ~2012
95930520111918610402311 ~2009
95934315111918686302311 ~2009
95936177511918723550311 ~2009
95938357911918767158311 ~2009
959385045117268930811912 ~2011
95945465511918909310311 ~2009
95945529831918910596711 ~2009
95952656511919053130311 ~2009
95954463591919089271911 ~2009
95960781711919215634311 ~2009
95964332631919286652711 ~2009
95965645311919312906311 ~2009
95968544391919370887911 ~2009
95970513375758230802311 ~2010
95970794031919415880711 ~2009
95970891135758253467911 ~2010
95972856831919457136711 ~2009
959748343940309430443912 ~2012
959751427321114531400712 ~2012
Exponent Prime Factor Dig. Year
95976840591919536811911 ~2009
95977658991919553179911 ~2009
95977676031919553520711 ~2009
95980543311919610866311 ~2009
95980561917678444952911 ~2010
95982037431919640748711 ~2009
95982477591919649551911 ~2009
95983197231919663944711 ~2009
95985066015759103960711 ~2010
95985614991919712299911 ~2009
95986235391919724707911 ~2009
959872488746073879457712 ~2012
95990853831919817076711 ~2009
95991294711919825894311 ~2009
95991970311919839406311 ~2009
95994121311919882426311 ~2009
95994158511919883170311 ~2009
95997853191919957063911 ~2009
95999118079599911807111 ~2011
96005703591920114071911 ~2009
96006243111920124862311 ~2009
96007807431920156148711 ~2009
96008590911920171818311 ~2009
96010504791920210095911 ~2009
96011232711920224654311 ~2009
Home
4.724.182 digits
e-mail
25-04-13