Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
95437947831908758956711 ~2009
95440337031908806740711 ~2009
95441638735726498323911 ~2010
95442002277635360181711 ~2010
95442076191908841523911 ~2009
95448560031908971200711 ~2009
95449093735726945623911 ~2010
95449882615726992956711 ~2010
95450092191909001843911 ~2009
95451877311909037546311 ~2009
95452200111909044002311 ~2009
95454532431909090648711 ~2009
95461345191909226903911 ~2009
95462724231909254484711 ~2009
95464746111909294922311 ~2009
954702502315275240036912 ~2011
95472241431909444828711 ~2009
95474157231909483144711 ~2009
95475676911909513538311 ~2009
95480633031909612660711 ~2009
95482498335728949899911 ~2010
95493275517639462040911 ~2010
95496536991909930739911 ~2009
95499191991909983839911 ~2009
95500003911910000078311 ~2009
Exponent Prime Factor Dig. Year
95502055791910041115911 ~2009
95502748375730164902311 ~2010
95503644711910072894311 ~2009
95504545815730272748711 ~2010
95507090391910141807911 ~2009
95516984397641358751311 ~2010
95519645991910392919911 ~2009
95521915335731314919911 ~2010
95522875935731372555911 ~2010
95529071511910581430311 ~2009
95529974511910599490311 ~2009
95532191031910643820711 ~2009
95537734791910754695911 ~2009
95538219679553821967111 ~2011
955390059140126382482312 ~2012
95541654591910833091911 ~2009
95544703791910894075911 ~2009
95545221231910904424711 ~2009
95550457431911009148711 ~2009
95554447911911088958311 ~2009
95554692417644375392911 ~2010
955564215722933541176912 ~2012
95557541391911150827911 ~2009
95559325791911186515911 ~2009
95560318431911206368711 ~2009
Exponent Prime Factor Dig. Year
95569019991911380399911 ~2009
95569740231911394804711 ~2009
95570607591911412151911 ~2009
95571956397645756511311 ~2010
95572308975734338538311 ~2010
95593820577647505645711 ~2010
95602952031912059040711 ~2009
95614946991912298939911 ~2009
95615006031912300120711 ~2009
95623496631912469932711 ~2009
95625748911912514978311 ~2009
95627014431912540288711 ~2009
956293061313388102858312 ~2011
95631486711912629734311 ~2009
95634305991912686119911 ~2009
95636967711912739354311 ~2009
95638615791912772315911 ~2009
95639729631912794592711 ~2009
95642886117651430888911 ~2010
95648742831912974856711 ~2009
95649109197651928735311 ~2010
95649875335738992519911 ~2010
95650916031913018320711 ~2009
95650969911913019398311 ~2009
95654377431913087548711 ~2009
Exponent Prime Factor Dig. Year
95660362735739621763911 ~2010
95663154831913263096711 ~2009
95669599311913391986311 ~2009
95670540711913410814311 ~2009
956707977115307327633712 ~2011
95681882217654550576911 ~2010
95683772511913675450311 ~2009
95689774431913795488711 ~2009
95692348615741540916711 ~2010
95697399231913947984711 ~2009
95699042775741942566311 ~2010
95704939791914098795911 ~2009
95707016631914140332711 ~2009
95712848511914256970311 ~2009
957135347917228436262312 ~2011
95714043711914280874311 ~2009
95718275391914365507911 ~2009
95720663031914413260711 ~2009
95725152591914503051911 ~2009
95730168615743810116711 ~2010
95734210017658736800911 ~2010
95737205991914744119911 ~2009
95738779617659102368911 ~2010
95742098599574209859111 ~2011
95745496431914909928711 ~2009
Home
4.724.182 digits
e-mail
25-04-13