Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
96011632519601163251111 ~2011
96012447711920248954311 ~2009
96015983535760959011911 ~2010
96016122711920322454311 ~2009
96017140791920342815911 ~2009
960226312923045431509712 ~2012
96024705111920494102311 ~2009
960249998974899499914312 ~2013
96025487511920509750311 ~2009
960272176136490342691912 ~2012
96028463391920569267911 ~2009
96028957791920579155911 ~2009
96030537231920610744711 ~2009
96035336239603533623111 ~2011
96035702391920714047911 ~2009
960390213715366243419312 ~2011
96041596791920831935911 ~2009
96042553191920851063911 ~2009
96043201135762592067911 ~2010
96043674111920873482311 ~2009
96044371791920887435911 ~2009
96055041231921100824711 ~2009
96059359519605935951111 ~2011
96063027591921260551911 ~2009
96064666791921293335911 ~2009
Exponent Prime Factor Dig. Year
96070970775764258246311 ~2010
96071421015764285260711 ~2010
96079057399607905739111 ~2011
96082702335764962139911 ~2010
960868261728826047851112 ~2012
96087678591921753571911 ~2009
96092094711921841894311 ~2009
96092329431921846588711 ~2009
96092727231921854544711 ~2009
96094561191921891223911 ~2009
96095243391921904867911 ~2009
96096354591921927091911 ~2009
96096887031921937740711 ~2009
96098471991921969439911 ~2009
96100735911922014718311 ~2009
96101658711922033174311 ~2009
96102327831922046556711 ~2009
96102925911922058518311 ~2009
96111605511922232110311 ~2009
961145725923067497421712 ~2012
96117807775767068466311 ~2010
96119030511922380610311 ~2009
96120803991922416079911 ~2009
96121908831922438176711 ~2009
96128171391922563427911 ~2009
Exponent Prime Factor Dig. Year
96136208391922724167911 ~2009
96143790231922875804711 ~2009
96150213591923004271911 ~2009
96152697111923053942311 ~2009
96154275711923085514311 ~2009
96154728711923094574311 ~2009
96159171231923183424711 ~2009
96162113575769726814311 ~2010
961632966115386127457712 ~2011
96163425831923268516711 ~2009
96169462431923389248711 ~2009
96172200711923444014311 ~2009
96173308191923466163911 ~2009
961761131313464655838312 ~2011
96176586231923531724711 ~2009
96177580431923551608711 ~2009
96181961511923639230311 ~2009
96187227831923744556711 ~2009
96187903191923758063911 ~2009
96189771015771386260711 ~2010
96195934375771756062311 ~2010
96204749391924094987911 ~2009
96205208391924104167911 ~2009
96207592431924151848711 ~2009
96211251591924225031911 ~2009
Exponent Prime Factor Dig. Year
96221619111924432382311 ~2009
96222481431924449628711 ~2009
96244157631924883152711 ~2009
96248913477699913077711 ~2010
962552056136576978131912 ~2012
96258163311925163266311 ~2009
96265479375775928762311 ~2010
96266346831925326936711 ~2009
96270924111925418482311 ~2009
96274116177701929293711 ~2010
96276028191925520563911 ~2009
96277885191925557703911 ~2009
962846906323108325751312 ~2012
96288713031925774260711 ~2009
96290612719629061271111 ~2011
96290726991925814539911 ~2009
962919193125035899020712 ~2012
963005383315408086132912 ~2011
96303228177704258253711 ~2010
96304072431926081448711 ~2009
96307361031926147220711 ~2009
96313455111926269102311 ~2009
96319892991926397859911 ~2009
963282402128898472063112 ~2012
96333580791926671615911 ~2009
Home
4.724.182 digits
e-mail
25-04-13