Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
31861308237646713975311 ~2008
31865295731911917743911 ~2006
3186617459637323491910 ~2005
31866991211912019472711 ~2006
318695597913385215111912 ~2008
3187046003637409200710 ~2005
31870698913187069891111 ~2007
3187194371637438874310 ~2005
3187236683637447336710 ~2005
31872770872549821669711 ~2007
31874509019562352703111 ~2008
3187486871637497374310 ~2005
31875566392550045311311 ~2007
3187699379637539875910 ~2005
3187743131637548626310 ~2005
31877933171912675990311 ~2006
3187809899637561979910 ~2005
3187932263637586452710 ~2005
3187949519637589903910 ~2005
3188173823637634764710 ~2005
3188404883637680976710 ~2005
3188487899637697579910 ~2005
3188526119637705223910 ~2005
3188559743637711948710 ~2005
3188950463637790092710 ~2005
Exponent Prime Factor Digits Year
3189037451637807490310 ~2005
31891003817016020838311 ~2008
3189190079637838015910 ~2005
3189277463637855492710 ~2005
3189309983637861996710 ~2005
31894077019568223103111 ~2008
3189421211637884242310 ~2005
3189431099637886219910 ~2005
3189492863637898572710 ~2005
318963037330620451580912 ~2009
3189640823637928164710 ~2005
31896603371913796202311 ~2006
31896870915741436763911 ~2008
31897101793189710179111 ~2007
3189739523637947904710 ~2005
31898025292551842023311 ~2007
31900081211914004872711 ~2006
3190032239638006447910 ~2005
3190192751638038550310 ~2005
3190255091638051018310 ~2005
31903962193190396219111 ~2007
3190452179638090435910 ~2005
3190483799638096759910 ~2005
3190641491638128298310 ~2005
3190721063638144212710 ~2005
Exponent Prime Factor Digits Year
3190766399638153279910 ~2005
3190792079638158415910 ~2005
3191020499638204099910 ~2005
31910530072552842405711 ~2007
3191286239638257247910 ~2005
3191288519638257703910 ~2005
3191323643638264728710 ~2005
31914677934468054910311 ~2007
3191511203638302240710 ~2005
3191712371638342474310 ~2005
3191720303638344060710 ~2005
3191858303638371660710 ~2005
31918616771915117006311 ~2006
3191866103638373220710 ~2005
3191916323638383264710 ~2005
3191954879638390975910 ~2005
3191964563638392912710 ~2005
31920163011915209780711 ~2006
3192160343638432068710 ~2005
3192380699638476139910 ~2005
31924009211915440552711 ~2006
3192405059638481011910 ~2005
31925014012554001120911 ~2007
3192504743638500948710 ~2005
31925345571915520734311 ~2006
Exponent Prime Factor Digits Year
31925716637662171991311 ~2008
3192571979638514395910 ~2005
31927690571915661434311 ~2006
3192945911638589182310 ~2005
3193132583638626516710 ~2005
3193177271638635454310 ~2005
3193179659638635931910 ~2005
31932033313193203331111 ~2007
31933530771916011846311 ~2006
31935078433193507843111 ~2007
3193944791638788958310 ~2005
319398002935133780319112 ~2010
3194064311638812862310 ~2005
3194373911638874782310 ~2005
31944394993194439499111 ~2007
31946222411916773344711 ~2006
3194722463638944492710 ~2005
3194725619638945123910 ~2005
31950056572556004525711 ~2007
3195071123639014224710 ~2005
31951270972556101677711 ~2007
3195146351639029270310 ~2005
31955538592556443087311 ~2007
3195737999639147599910 ~2005
3195769319639153863910 ~2005
Home
5.157.210 digits
e-mail
25-11-02