Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
64966109991299322199911 ~2008
64966472333897988339911 ~2009
64966612191299332243911 ~2008
64967025711299340514311 ~2008
64967969511299359390311 ~2008
64973700231299474004711 ~2008
64974071391299481427911 ~2008
64975025031299500500711 ~2008
64975081516497508151111 ~2009
64977116596497711659111 ~2009
64979387095198350967311 ~2009
64980492231299609844711 ~2008
64980753415198460272911 ~2009
64983480111299669602311 ~2008
64983763311299675266311 ~2008
64984563373899073802311 ~2009
64984563831299691276711 ~2008
649848244322094840306312 ~2011
64984950711299699014311 ~2008
64985315116498531511111 ~2009
64985610711299712214311 ~2008
64986588111299731762311 ~2008
64988554311299771086311 ~2008
64990546311299810926311 ~2008
64994858031299897160711 ~2008
Exponent Prime Factor Dig. Year
64994966511299899330311 ~2008
64995293391299905867911 ~2008
64998605813899916348711 ~2009
65001947511300038950311 ~2008
65003838591300076771911 ~2008
650065735719501972071112 ~2011
65008174191300163483911 ~2008
65010060591300201211911 ~2008
65010406613900624396711 ~2009
650126158310402018532912 ~2010
65013858831300277176711 ~2008
650176309127307404982312 ~2011
65019727911300394558311 ~2008
65023382991300467659911 ~2008
65024428191300488563911 ~2008
65024618631300492372711 ~2008
65026751991300535039911 ~2008
65031491511300629830311 ~2008
65035111911300702238311 ~2008
65039545333902372719911 ~2009
65043102591300862051911 ~2008
65044782831300895656711 ~2008
65045135031300902700711 ~2008
65045814591300916291911 ~2008
65046072831300921456711 ~2008
Exponent Prime Factor Dig. Year
65048078391300961567911 ~2008
65051274111301025482311 ~2008
65053665591301073311911 ~2008
65054865831301097316711 ~2008
65055315231301106304711 ~2008
65055534973903332098311 ~2009
65055912831301118256711 ~2008
65055948831301118976711 ~2008
65056323595204505887311 ~2009
65056789791301135795911 ~2008
65058694311301173886311 ~2008
65068737711301374754311 ~2008
65071447791301428955911 ~2008
65072327173904339630311 ~2009
65076802191301536043911 ~2008
65078200915206256072911 ~2009
65082188631301643772711 ~2008
65082265133904935907911 ~2009
65082299391301645987911 ~2008
65083145631301662912711 ~2008
65084848311301696966311 ~2008
65086420795206913663311 ~2009
650881301911715863434312 ~2010
65088253911301765078311 ~2008
65088911391301778227911 ~2008
Exponent Prime Factor Dig. Year
65098610031301972200711 ~2008
651030138710416482219312 ~2010
65105247111302104942311 ~2008
65109311391302186227911 ~2008
65109601191302192023911 ~2008
65113294791302265895911 ~2008
65113997095209119767311 ~2009
65115987831302319756711 ~2008
65116055631302321112711 ~2008
651175278131256413348912 ~2011
65118244996511824499111 ~2009
65122125413907327524711 ~2009
65122558311302451166311 ~2008
65122967991302459359911 ~2008
65123812311302476246311 ~2008
65126991115210159288911 ~2009
65127965991302559319911 ~2008
65134562631302691252711 ~2008
65134652391302693047911 ~2008
65135174031302703480711 ~2008
651403166935175771012712 ~2011
65141735533908504131911 ~2009
65146277995211702239311 ~2009
65151661911303033238311 ~2008
65153685711303073714311 ~2008
Home
4.724.182 digits
e-mail
25-04-13