Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4013864663802772932710 ~2006
4014121703802824340710 ~2006
401441944719269213345712 ~2009
4014562043802912408710 ~2006
40148419132408905147911 ~2007
4014908063802981612710 ~2006
40149291893211943351311 ~2007
4014981923802996384710 ~2006
40152430514015243051111 ~2008
4015335539803067107910 ~2006
4015551203803110240710 ~2006
4015713671803142734310 ~2006
4015721939803144387910 ~2006
4015787459803157491910 ~2006
4016030783803206156710 ~2006
40161064073212885125711 ~2007
4016169359803233871910 ~2006
4016217923803243584710 ~2006
4016230199803246039910 ~2006
4016293751803258750310 ~2006
4016479991803295998310 ~2006
4016506379803301275910 ~2006
40165195812409911748711 ~2007
40166093412409965604711 ~2007
4016718599803343719910 ~2006
Exponent Prime Factor Digits Year
40167265012410035900711 ~2007
4016770559803354111910 ~2006
401679553712050386611112 ~2009
4016878139803375627910 ~2006
40171771679641225200911 ~2009
4017215759803443151910 ~2006
4017216431803443286310 ~2006
4017336131803467226310 ~2006
40173764532410425871911 ~2007
401741284928925372512912 ~2010
40174909932410494595911 ~2007
4017566519803513303910 ~2006
40177730935624882330311 ~2008
4017802319803560463910 ~2006
4017848363803569672710 ~2006
4017902939803580587910 ~2006
40179242416428678785711 ~2008
40180222932410813375911 ~2007
4018093511803618702310 ~2006
40181098973214487917711 ~2007
4018167071803633414310 ~2006
4018237991803647598310 ~2006
40184319293214745543311 ~2007
4018666979803733395910 ~2006
4018846439803769287910 ~2006
Exponent Prime Factor Digits Year
40190322732411419363911 ~2007
4019118011803823602310 ~2006
4019196803803839360710 ~2006
4019307863803861572710 ~2006
4019469299803893859910 ~2006
4019597819803919563910 ~2006
4019676179803935235910 ~2006
4019691971803938394310 ~2006
4019771699803954339910 ~2006
4019961503803992300710 ~2006
4020378839804075767910 ~2006
402048418316081936732112 ~2009
4020536939804107387910 ~2006
402058963112865886819312 ~2009
4020680291804136058310 ~2006
4020690203804138040710 ~2006
4020786323804157264710 ~2006
402091205322517107496912 ~2010
4021055963804211192710 ~2006
40211059274021105927111 ~2008
4021187279804237455910 ~2006
40212550132412753007911 ~2007
4021415063804283012710 ~2006
4021420163804284032710 ~2006
40214755938847246304711 ~2009
Exponent Prime Factor Digits Year
4021493603804298720710 ~2006
4021541663804308332710 ~2006
4021594331804318866310 ~2006
4021612643804322528710 ~2006
4021769243804353848710 ~2006
4021905599804381119910 ~2006
4021919171804383834310 ~2006
4022066183804413236710 ~2006
4022104991804420998310 ~2006
4022149031804429806310 ~2006
4022159651804431930310 ~2006
40222378313217790264911 ~2007
402229036912066871107112 ~2009
4022470559804494111910 ~2006
40224984434022498443111 ~2008
4022606111804521222310 ~2006
4022624603804524920710 ~2006
402273641344250100543112 ~2010
4022839811804567962310 ~2006
4022957819804591563910 ~2006
40229582812413774968711 ~2007
4023035531804607106310 ~2006
40231945732413916743911 ~2007
4023200003804640000710 ~2006
4023276479804655295910 ~2006
Home
5.037.460 digits
e-mail
25-09-07