Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4067843639813568727910 ~2006
4067950571813590114310 ~2006
4068112799813622559910 ~2006
4068175739813635147910 ~2006
4068191219813638243910 ~2006
40682683612440961016711 ~2007
40683097199763943325711 ~2009
406859994726852759650312 ~2010
40686506873254920549711 ~2008
4068711359813742271910 ~2006
4068748199813749639910 ~2006
4069087391813817478310 ~2006
4069099103813819820710 ~2006
4069107863813821572710 ~2006
40691224373255297949711 ~2008
4069440839813888167910 ~2006
4069501451813900290310 ~2006
4069598243813919648710 ~2006
406974013712209220411112 ~2009
4069848899813969779910 ~2006
4069926083813985216710 ~2006
4070003279814000655910 ~2006
4070075183814015036710 ~2006
40702515317326452755911 ~2008
40704648732442278923911 ~2007
Exponent Prime Factor Digits Year
4070908559814181711910 ~2006
40710157135699421998311 ~2008
40711494293256919543311 ~2008
407131302112213939063112 ~2009
40713319972442799198311 ~2007
4071784319814356863910 ~2006
4071848591814369718310 ~2006
4071973151814394630310 ~2006
40719804314071980431111 ~2008
4072419731814483946310 ~2006
4072437731814487546310 ~2006
4072564283814512856710 ~2006
4072616231814523246310 ~2006
40726971132443618267911 ~2007
40727075813258166064911 ~2008
40728546732443712803911 ~2007
40733061772443983706311 ~2007
4073324939814664987910 ~2006
4073458211814691642310 ~2006
40739399418962667870311 ~2009
4074004223814800844710 ~2006
4074144923814828984710 ~2006
4074157943814831588710 ~2006
4074241043814848208710 ~2006
4074425783814885156710 ~2006
Exponent Prime Factor Digits Year
4074532211814906442310 ~2006
4074564239814912847910 ~2006
40747261975704616675911 ~2008
407478901318744029459912 ~2009
4074866639814973327910 ~2006
40749922677334986080711 ~2008
407499416913039981340912 ~2009
4075283291815056658310 ~2006
4075330223815066044710 ~2006
4075341323815068264710 ~2006
4075491011815098202310 ~2006
4075616003815123200710 ~2006
407566205339126355708912 ~2010
407581075119563891604912 ~2009
4075927391815185478310 ~2006
40760286593260822927311 ~2008
4076180939815236187910 ~2006
4076226443815245288710 ~2006
4076298911815259782310 ~2006
4076437979815287595910 ~2006
4077173003815434600710 ~2006
4077200651815440130310 ~2006
40772862239785486935311 ~2009
4077354023815470804710 ~2006
4077429371815485874310 ~2006
Exponent Prime Factor Digits Year
4077718871815543774310 ~2006
4077825959815565191910 ~2006
4077866603815573320710 ~2006
4078325039815665007910 ~2006
40783863293262709063311 ~2008
4078423931815684786310 ~2006
4078497743815699548710 ~2006
4078518371815703674310 ~2006
4078757471815751494310 ~2006
4079080991815816198310 ~2006
40794414593263553167311 ~2008
40795248074079524807111 ~2008
4079563679815912735910 ~2006
4079621459815924291910 ~2006
4079955263815991052710 ~2006
4080014651816002930310 ~2006
4080252623816050524710 ~2006
4080268631816053726310 ~2006
4080482963816096592710 ~2006
40806120012448367200711 ~2007
40806881693264550535311 ~2008
4080800891816160178310 ~2006
40808281812448496908711 ~2007
40808658012448519480711 ~2007
40809830412448589824711 ~2007
Home
4.903.097 digits
e-mail
25-07-08