Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4055258579811051715910 ~2006
4055511263811102252710 ~2006
40555250693244420055311 ~2008
4055554631811110926310 ~2006
40558026074055802607111 ~2008
4056211871811242374310 ~2006
4056271319811254263910 ~2006
4056491759811298351910 ~2006
40573184932434391095911 ~2007
4057470251811494050310 ~2006
40575591732434535503911 ~2007
4057660511811532102310 ~2006
4057704971811540994310 ~2006
4057811003811562200710 ~2006
40580911372434854682311 ~2007
4058304479811660895910 ~2006
4058362739811672547910 ~2006
40586053514058605351111 ~2008
40586623812435197428711 ~2007
4058718179811743635910 ~2006
40587531132435251867911 ~2007
4058760983811752196710 ~2006
40590858372435451502311 ~2007
40592655477306677984711 ~2008
4059268859811853771910 ~2006
Exponent Prime Factor Digits Year
4059320003811864000710 ~2006
4059374219811874843910 ~2006
4059439799811887959910 ~2006
4059465191811893038310 ~2006
4059587351811917470310 ~2006
4059624311811924862310 ~2006
40598112012435886720711 ~2007
40600762876496122059311 ~2008
4060121003812024200710 ~2006
4060220771812044154310 ~2006
406025971742226701056912 ~2010
4060462691812092538310 ~2006
40605134812436308088711 ~2007
4060634471812126894310 ~2006
40606430532436385831911 ~2007
40606573313248525864911 ~2008
4060696439812139287910 ~2006
4061031983812206396710 ~2006
40611537532436692251911 ~2007
40611738197310112874311 ~2008
40612149612436728976711 ~2007
40615304095686142572711 ~2008
4061619071812323814310 ~2006
40617081772437024906311 ~2007
40617320393249385631311 ~2008
Exponent Prime Factor Digits Year
4061916563812383312710 ~2006
4061917943812383588710 ~2006
4062180359812436071910 ~2006
4062231983812446396710 ~2006
4062281759812456351910 ~2006
4062348539812469707910 ~2006
4062411911812482382310 ~2006
40624651572437479094311 ~2007
40628844012437730640711 ~2007
40631489332437889359911 ~2007
40632718732437963123911 ~2007
40633032899751927893711 ~2009
4063337819812667563910 ~2006
4063686551812737310310 ~2006
40637021298940144683911 ~2009
40637668212438260092711 ~2007
40639002779753360664911 ~2009
4063988003812797600710 ~2006
4064087459812817491910 ~2006
4064247059812849411910 ~2006
40642550234064255023111 ~2008
40643740495690123668711 ~2008
4064542271812908454310 ~2006
4064585939812917187910 ~2006
40646702572438802154311 ~2007
Exponent Prime Factor Digits Year
4064765843812953168710 ~2006
4064837291812967458310 ~2006
406496313719511823057712 ~2009
40653531412439211884711 ~2007
4065370979813074195910 ~2006
4065457871813091574310 ~2006
4065466523813093304710 ~2006
40656111138944344448711 ~2009
4065662339813132467910 ~2006
4065868883813173776710 ~2006
40660900338945398072711 ~2009
40661611932439696715911 ~2007
4066209611813241922310 ~2006
4066291571813258314310 ~2006
4066365791813273158310 ~2006
4066785839813357167910 ~2006
40668176332440090579911 ~2007
40673519212440411152711 ~2007
40673736914067373691111 ~2008
4067659763813531952710 ~2006
40676720393254137631311 ~2008
4067710463813542092710 ~2006
406774031913016769020912 ~2009
40677636593254210927311 ~2008
4067788379813557675910 ~2006
Home
4.903.097 digits
e-mail
25-07-08