Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4081033919816206783910 ~2006
4081170851816234170310 ~2006
40811744573264939565711 ~2008
4081229291816245858310 ~2006
40812990713265039256911 ~2008
40813538332448812299911 ~2007
4081439783816287956710 ~2006
4081664183816332836710 ~2006
4081678103816335620710 ~2006
40818311412449098684711 ~2007
408198808746534664191912 ~2010
4082162471816432494310 ~2006
4082193371816438674310 ~2006
4082215211816443042310 ~2006
408223558719594730817712 ~2009
4082372303816474460710 ~2006
4082397659816479531910 ~2006
40824274973265941997711 ~2008
40826566612449593996711 ~2007
4083607343816721468710 ~2006
4083625211816725042310 ~2006
4083678479816735695910 ~2006
4083758363816751672710 ~2006
4083772883816754576710 ~2006
40837746473267019717711 ~2008
Exponent Prime Factor Digits Year
4083864443816772888710 ~2006
4084217183816843436710 ~2006
40842456012450547360711 ~2007
4084315811816863162310 ~2006
40843230732450593843911 ~2007
4084383311816876662310 ~2006
4084511663816902332710 ~2006
4084602419816920483910 ~2006
4084769303816953860710 ~2006
40847694593267815567311 ~2008
40847753772450865226311 ~2007
40850555476536088875311 ~2008
40851031073268082485711 ~2008
40852876994085287699111 ~2008
4085651639817130327910 ~2006
4085765279817153055910 ~2006
40858400693268672055311 ~2008
4085919983817183996710 ~2006
4085945351817189070310 ~2006
4086037691817207538310 ~2006
40860395212451623712711 ~2007
40862206276537953003311 ~2008
4086290723817258144710 ~2006
4086408383817281676710 ~2006
4086499031817299806310 ~2006
Exponent Prime Factor Digits Year
4086643283817328656710 ~2006
40869910913269592872911 ~2008
4087128791817425758310 ~2006
4087150631817430126310 ~2006
4087294619817458923910 ~2006
4087533563817506712710 ~2006
40877931612452675896711 ~2007
4088058431817611686310 ~2006
408818533722893837887312 ~2010
408820916310629343823912 ~2009
4088565119817713023910 ~2006
40885948336541751732911 ~2008
4088768459817753691910 ~2006
4088947319817789463910 ~2006
4089056819817811363910 ~2006
40891259873271300789711 ~2008
4089212339817842467910 ~2006
40894757212453685432711 ~2007
40895995132453759707911 ~2007
4089690851817938170310 ~2006
4089833963817966792710 ~2006
4089882299817976459910 ~2006
4089956303817991260710 ~2006
4090156979818031395910 ~2006
4090362779818072555910 ~2006
Exponent Prime Factor Digits Year
4090366979818073395910 ~2006
409041331715543570604712 ~2009
4090607771818121554310 ~2006
40908955612454537336711 ~2007
40909875314090987531111 ~2008
4091066951818213390310 ~2006
4091090303818218060710 ~2006
4091362631818272526310 ~2006
4091453651818290730310 ~2006
40915304812454918288711 ~2007
40916564476546650315311 ~2008
4091759999818351999910 ~2006
4091884799818376959910 ~2006
40920208932455212535911 ~2007
4092490679818498135910 ~2006
40925178612455510716711 ~2007
4092632711818526542310 ~2006
4092655439818531087910 ~2006
4092822731818564546310 ~2006
4092857819818571563910 ~2006
40928865175730041123911 ~2008
4092934211818586842310 ~2006
4093041539818608307910 ~2006
4093285439818657087910 ~2006
4093471643818694328710 ~2006
Home
4.903.097 digits
e-mail
25-07-08