Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
40335325379680478088911 ~2009
4033803311806760662310 ~2006
40338944114033894411111 ~2008
4033922279806784455910 ~2006
4033949651806789930310 ~2006
40339625393227170031311 ~2007
4034089211806817842310 ~2006
4034255999806851199910 ~2006
40344285113227542808911 ~2007
4034438483806887696710 ~2006
4034541083806908216710 ~2006
40345799776455327963311 ~2008
40346743634034674363111 ~2008
4034729651806945930310 ~2006
4034874803806974960710 ~2006
4035197063807039412710 ~2006
4035278939807055787910 ~2006
4035312719807062543910 ~2006
40358935012421536100711 ~2007
4036083059807216611910 ~2006
4036109963807221992710 ~2006
4036193519807238703910 ~2006
4036193543807238708710 ~2006
4036420319807284063910 ~2006
4036432199807286439910 ~2006
Exponent Prime Factor Digits Year
4036520399807304079910 ~2006
4036547831807309566310 ~2006
40366246673229299733711 ~2007
4036639199807327839910 ~2006
4036682711807336542310 ~2006
40367097773229367821711 ~2007
40369692194036969219111 ~2008
40370341673229627333711 ~2007
4037258363807451672710 ~2006
40374410873229952869711 ~2007
4037611211807522242310 ~2006
4037652431807530486310 ~2006
4038200951807640190310 ~2006
40382130372422927822311 ~2007
40382191212422931472711 ~2007
40385648693230851895311 ~2007
4038791219807758243910 ~2006
40388057772423283466311 ~2007
4039011503807802300710 ~2006
4039036931807807386310 ~2006
4039389251807877850310 ~2006
4039457459807891491910 ~2006
4039602503807920500710 ~2006
4039608071807921614310 ~2006
4039661063807932212710 ~2006
Exponent Prime Factor Digits Year
4039892819807978563910 ~2006
4039960103807992020710 ~2006
4040156303808031260710 ~2006
40402078673232166293711 ~2007
4040215031808043006310 ~2006
4040898299808179659910 ~2006
4041053903808210780710 ~2006
40411556477274080164711 ~2008
4041173459808234691910 ~2006
4041201491808240298310 ~2006
40412188932424731335911 ~2007
40415898132424953887911 ~2007
4041666851808333370310 ~2006
4041781391808356278310 ~2006
4041798539808359707910 ~2006
4042567703808513540710 ~2006
404258111920212905595112 ~2009
404280560915362661314312 ~2009
40428516713234281336911 ~2008
4043036351808607270310 ~2006
40430567234043056723111 ~2008
40430637012425838220711 ~2007
40430994293234479543311 ~2008
4043536943808707388710 ~2006
40438908132426334487911 ~2007
Exponent Prime Factor Digits Year
4043982419808796483910 ~2006
4044502151808900430310 ~2006
40445771114044577111111 ~2008
4044588419808917683910 ~2006
4044847679808969535910 ~2006
40449833572426990014311 ~2007
4045250243809050048710 ~2006
4045484843809096968710 ~2006
4045511231809102246310 ~2006
4045959479809191895910 ~2006
4046103203809220640710 ~2006
4046123531809224706310 ~2006
4046143163809228632710 ~2006
4046153339809230667910 ~2006
40461572776473851643311 ~2008
40466138813237291104911 ~2008
4047097391809419478310 ~2006
4047115031809423006310 ~2006
40472217293237777383311 ~2008
4047224591809444918310 ~2006
4047373079809474615910 ~2006
40474147812428448868711 ~2007
4047482531809496506310 ~2006
40477824473238225957711 ~2008
4047786959809557391910 ~2006
Home
4.724.182 digits
e-mail
25-04-13