Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1579151939315830387910 ~2003
1579252403315850480710 ~2003
1579252777947551666310 ~2004
1579270499315854099910 ~2003
1579380059315876011910 ~2003
1579400723315880144710 ~2003
1579525691315905138310 ~2003
1579568093947740855910 ~2004
15795757631579575763111 ~2005
1579627943315925588710 ~2003
1579652531315930506310 ~2003
1579686263315937252710 ~2003
15797281192843510614311 ~2005
1579777739315955547910 ~2003
1579787603315957520710 ~2003
15798243732527718996911 ~2005
1579895111315979022310 ~2003
1579930043315986008710 ~2003
1579981943315996388710 ~2003
1579982483315996496710 ~2003
1580022023316004404710 ~2003
1580048831316009766310 ~2003
15800573991264045919311 ~2004
15801308092212183132711 ~2005
15801806211264144496911 ~2004
Exponent Prime Factor Digits Year
1580272019316054403910 ~2003
1580281679316056335910 ~2003
1580315543316063108710 ~2003
158033430710430206426312 ~2007
1580379011316075802310 ~2003
15803913178534113111911 ~2006
1580409503316081900710 ~2003
1580419499316083899910 ~2003
1580421911316084382310 ~2003
1580426951316085390310 ~2003
1580566979316113395910 ~2003
1580627663316125532710 ~2003
1580680691316136138310 ~2003
1580710343316142068710 ~2003
1580712431316142486310 ~2003
1580724143316144828710 ~2003
1580744573948446743910 ~2004
1580788283316157656710 ~2003
1580796863316159372710 ~2003
1580811341948486804710 ~2004
1580844641948506784710 ~2004
1580850203316170040710 ~2003
1580981483316196296710 ~2003
1581033479316206695910 ~2003
15810586071264846885711 ~2004
Exponent Prime Factor Digits Year
1581063719316212743910 ~2003
1581084863316216972710 ~2003
15810860816008127107911 ~2006
15811331172529812987311 ~2005
1581190739316238147910 ~2003
15812015533794883727311 ~2005
1581213941948728364710 ~2004
1581267263316253452710 ~2003
1581423059316284611910 ~2003
15814474032530315844911 ~2005
1581452843316290568710 ~2003
15814628231581462823111 ~2005
1581504731316300946310 ~2003
1581505613948903367910 ~2004
1581612443316322488710 ~2003
1581650099316330019910 ~2003
1581704759316340951910 ~2003
1581712259316342451910 ~2003
1581729839316345967910 ~2003
15817714611265417168911 ~2004
15817738991581773899111 ~2005
15817765011265421200911 ~2004
1581860471316372094310 ~2003
1581888857949133314310 ~2004
1581908183316381636710 ~2003
Exponent Prime Factor Digits Year
158199802712655984216112 ~2007
1582055543316411108710 ~2003
1582070519316414103910 ~2003
1582091939316418387910 ~2003
1582179719316435943910 ~2003
1582194083316438816710 ~2003
15822233811265778704911 ~2004
1582226279316445255910 ~2003
1582249919316449983910 ~2003
1582259603316451920710 ~2003
1582272803316454560710 ~2003
1582355111316471022310 ~2003
1582442051316488410310 ~2003
1582459633949475779910 ~2004
1582461623316492324710 ~2003
1582529219316505843910 ~2003
15825356991266028559311 ~2004
1582601831316520366310 ~2003
15826278972532204635311 ~2005
1582661771316532354310 ~2003
1582699523316539904710 ~2003
15827110933481964404711 ~2005
1582731719316546343910 ~2003
15828411014748523303111 ~2006
15828589433798861463311 ~2006
Home
5.157.210 digits
e-mail
25-11-02