Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4506405131901281026310 ~2006
45065343372703920602311 ~2008
450655402315322283678312 ~2009
4506670079901334015910 ~2006
4506693791901338758310 ~2006
45067813132704068787911 ~2008
450684462121632854180912 ~2010
45068903172704134190311 ~2008
4507098059901419611910 ~2006
4507110551901422110310 ~2006
45073322932704399375911 ~2008
45073718777211795003311 ~2009
4507534259901506851910 ~2006
45077270993606181679311 ~2008
4507917299901583459910 ~2006
45082294372704937662311 ~2008
4508257571901651514310 ~2006
4508327591901665518310 ~2006
4508341583901668316710 ~2006
45084549434508454943111 ~2008
4508510843901702168710 ~2006
45086691314508669131111 ~2008
4508887931901777586310 ~2006
45089395994508939599111 ~2008
4509370403901874080710 ~2006
Exponent Prime Factor Digits Year
4509382799901876559910 ~2006
45094546878117018436711 ~2009
45094723613607577888911 ~2008
4509475871901895174310 ~2006
4509485219901897043910 ~2006
4509581159901916231910 ~2006
45097879394509787939111 ~2008
45098437332705906239911 ~2008
4509845591901969118310 ~2006
45098471412705908284711 ~2008
4509924491901984898310 ~2006
4510123571902024714310 ~2006
4510372463902074492710 ~2006
4510557119902111423910 ~2006
4510629671902125934310 ~2006
45106676393608534111311 ~2008
4510692383902138476710 ~2006
4510725839902145167910 ~2006
4511364839902272967910 ~2006
45114073493609125879311 ~2008
4511541299902308259910 ~2006
4511591723902318344710 ~2006
4511597459902319491910 ~2006
45116911376316367591911 ~2008
45117818993609425519311 ~2008
Exponent Prime Factor Digits Year
4511874023902374804710 ~2006
451196689710828720552912 ~2009
4512034259902406851910 ~2006
4512082559902416511910 ~2006
4512623723902524744710 ~2006
4512690911902538182310 ~2006
45127876514512787651111 ~2008
4513113851902622770310 ~2006
4513157879902631575910 ~2006
4513554719902710943910 ~2006
45138319212708299152711 ~2008
4513880879902776175910 ~2006
4514056439902811287910 ~2006
4514098499902819699910 ~2006
45143736293611498903311 ~2008
45145141812708708508711 ~2008
4514560499902912099910 ~2006
4514785571902957114310 ~2006
45150518412709031104711 ~2008
4515080723903016144710 ~2006
45152264212709135852711 ~2008
45152461572709147694311 ~2008
4515450431903090086310 ~2006
45155335732709320143911 ~2008
45155460434515546043111 ~2008
Exponent Prime Factor Digits Year
45156147737224983636911 ~2009
4515769343903153868710 ~2006
4515777743903155548710 ~2006
4516090499903218099910 ~2006
45161186172709671170311 ~2008
4516242683903248536710 ~2006
45162617332709757039911 ~2008
451637600310839302407312 ~2009
45167287012710037220711 ~2008
451673248310840157959312 ~2009
4516816523903363304710 ~2006
45169183313613534664911 ~2008
4516927391903385478310 ~2006
4516973099903394619910 ~2006
45169751812710185108711 ~2008
4517109671903421934310 ~2006
4517195999903439199910 ~2006
4517653979903530795910 ~2006
4517710559903542111910 ~2006
451775224310842605383312 ~2009
4518010103903602020710 ~2006
4518032951903606590310 ~2006
45183207776325649087911 ~2008
4518458699903691739910 ~2006
45185070893614805671311 ~2008
Home
4.724.182 digits
e-mail
25-04-13