Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3130575599626115119910 ~2005
31306640272504531221711 ~2007
3131008511626201702310 ~2005
3131015843626203168710 ~2005
3131046923626209384710 ~2005
3131068163626213632710 ~2005
3131196791626239358310 ~2005
3131353223626270644710 ~2005
31314622273131462227111 ~2007
3131466311626293262310 ~2005
31316737611879004256711 ~2006
31317750913131775091111 ~2007
3131802731626360546310 ~2005
3131988383626397676710 ~2005
3132005759626401151910 ~2005
3132103379626420675910 ~2005
3132109391626421878310 ~2005
3132151271626430254310 ~2005
3132168491626433698310 ~2005
3132201179626440235910 ~2005
3132391859626478371910 ~2005
31325927811879555668711 ~2006
3132600539626520107910 ~2005
3132643583626528716710 ~2005
3132752351626550470310 ~2005
Exponent Prime Factor Digits Year
31327847574385898659911 ~2007
3133068923626613784710 ~2005
3133129319626625863910 ~2005
31331357233133135723111 ~2007
3133179683626635936710 ~2005
3133413911626682782310 ~2005
31334388075013502091311 ~2007
3133560719626712143910 ~2005
3133783619626756723910 ~2005
31338852771880331166311 ~2006
31339287292507142983311 ~2007
3134115851626823170310 ~2005
31341238571880474314311 ~2006
3134197463626839492710 ~2005
3134570963626914192710 ~2005
313473471112538938844112 ~2008
3134742239626948447910 ~2005
31348432515015749201711 ~2007
3135205043627041008710 ~2005
3135330059627066011910 ~2005
3135387371627077474310 ~2005
3135528983627105796710 ~2005
3135594383627118876710 ~2005
3135753839627150767910 ~2005
3135806123627161224710 ~2005
Exponent Prime Factor Digits Year
31359354011881561240711 ~2006
3136023119627204623910 ~2005
31361105392508888431311 ~2007
3136240799627248159910 ~2005
3136452359627290471910 ~2005
3136522751627304550310 ~2005
31365253979409576191111 ~2008
3136637459627327491910 ~2005
3136718723627343744710 ~2005
31368348073136834807111 ~2007
31370196315019231409711 ~2007
3137386559627477311910 ~2005
3137499983627499996710 ~2005
31375037937530009103311 ~2008
31375166092510013287311 ~2007
3137643011627528602310 ~2005
3137651663627530332710 ~2005
3137710403627542080710 ~2005
313773766110040760515312 ~2008
31377457612510196608911 ~2007
3137857763627571552710 ~2005
3138036491627607298310 ~2005
3138081959627616391910 ~2005
31382261113138226111111 ~2007
3138293303627658660710 ~2005
Exponent Prime Factor Digits Year
31383508377532042008911 ~2008
313853589113181850742312 ~2008
3138796883627759376710 ~2005
3138933491627786698310 ~2005
31393006931883580415911 ~2006
3139311419627862283910 ~2005
31394305993139430599111 ~2007
3139453151627890630310 ~2005
3139550279627910055910 ~2005
3139595111627919022310 ~2005
31396592692511727415311 ~2007
3139917251627983450310 ~2005
3140007323628001464710 ~2005
31400244673140024467111 ~2007
31401387171884083230311 ~2006
31401387411884083244711 ~2006
31402558931884153535911 ~2006
3140385491628077098310 ~2005
3140480039628096007910 ~2005
31405097512512407800911 ~2007
3140511323628102264710 ~2005
3140539823628107964710 ~2005
31407965171884477910311 ~2006
3140941151628188230310 ~2005
3140985299628197059910 ~2005
Home
4.724.182 digits
e-mail
25-04-13