Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1789924151357984830310 ~2003
1789964171357992834310 ~2003
1790036771358007354310 ~2003
1790126939358025387910 ~2003
1790152979358030595910 ~2003
17902096011074125760711 ~2004
1790212019358042403910 ~2003
17902268771074136126311 ~2004
1790233559358046711910 ~2003
1790377223358075444710 ~2003
1790407739358081547910 ~2003
1790592071358118414310 ~2003
17905973834297433719311 ~2006
1790601539358120307910 ~2003
17906389371432511149711 ~2005
17906599331074395959911 ~2004
1790670971358134194310 ~2003
1790695583358139116710 ~2003
1790838383358167676710 ~2003
1791077663358215532710 ~2003
1791107999358221599910 ~2003
1791136043358227208710 ~2003
1791257711358251542310 ~2003
1791340559358268111910 ~2003
1791349139358269827910 ~2003
Exponent Prime Factor Digits Year
17914480971433158477711 ~2005
1791623051358324610310 ~2003
1791653603358330720710 ~2003
1791764603358352920710 ~2003
1791795623358359124710 ~2003
1791837923358367584710 ~2003
1791907979358381595910 ~2003
17919855771075191346311 ~2004
1791987371358397474310 ~2003
17920358771075221526311 ~2004
1792038071358407614310 ~2003
1792040039358408007910 ~2003
1792065323358413064710 ~2003
1792126751358425350310 ~2003
17921425011075285500711 ~2004
1792161779358432355910 ~2003
1792171379358434275910 ~2003
1792258631358451726310 ~2003
17922631572867621051311 ~2005
17922715131075362907911 ~2004
1792313531358462706310 ~2003
1792320203358464040710 ~2003
1792323191358464638310 ~2003
1792376051358475210310 ~2003
17924269071433941525711 ~2005
Exponent Prime Factor Digits Year
1792589699358517939910 ~2003
17926408971075584538311 ~2004
1792648523358529704710 ~2003
1792728263358545652710 ~2003
1792805039358561007910 ~2003
179286709920080111508912 ~2008
1793186963358637392710 ~2003
1793190299358638059910 ~2003
17932201371075932082311 ~2004
1793277539358655507910 ~2003
17933413211076004792711 ~2004
1793369183358673836710 ~2003
1793441999358688399910 ~2003
179344633910401988766312 ~2007
17934522791793452279111 ~2005
1793471279358694255910 ~2003
17935104731076106283911 ~2004
1793518619358703723910 ~2003
1793529659358705931910 ~2003
1793544443358708888710 ~2003
1793547611358709522310 ~2003
17935550811076133048711 ~2004
17935828011434866240911 ~2005
1793589719358717943910 ~2003
17935935131076156107911 ~2004
Exponent Prime Factor Digits Year
17935940931076156455911 ~2004
1793648159358729631910 ~2003
1793673191358734638310 ~2003
1793691239358738247910 ~2003
1793724623358744924710 ~2003
17938026011076281560711 ~2004
17938525513228934591911 ~2006
1793870471358774094310 ~2003
17938965431793896543111 ~2005
1793953943358790788710 ~2003
1793968763358793752710 ~2003
1793975159358795031910 ~2003
17940140211076408412711 ~2004
1794053603358810720710 ~2003
1794063203358812640710 ~2003
1794063611358812722310 ~2003
1794138323358827664710 ~2003
1794158111358831622310 ~2003
1794179603358835920710 ~2003
1794228731358845746310 ~2003
1794247943358849588710 ~2003
17943005091435440407311 ~2005
1794321383358864276710 ~2003
1794387923358877584710 ~2003
17944430171076665810311 ~2004
Home
4.903.097 digits
e-mail
25-07-08