Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1527926483305585296710 ~2003
1527975173916785103910 ~2004
1527981671305596334310 ~2003
15279980831527998083111 ~2004
1528021823305604364710 ~2003
152802970913446661439312 ~2007
15281079612444972737711 ~2005
1528120631305624126310 ~2003
1528158839305631767910 ~2003
1528174451305634890310 ~2003
1528209437916925662310 ~2004
1528223003305644600710 ~2003
1528240523305648104710 ~2003
1528292393916975435910 ~2004
1528335973917001583910 ~2004
1528360763305672152710 ~2003
1528412843305682568710 ~2003
1528432739305686547910 ~2003
1528448783305689756710 ~2003
1528465283305693056710 ~2003
1528475411305695082310 ~2003
1528492391305698478310 ~2003
1528514171305702834310 ~2003
1528546477917127886310 ~2004
1528563671305712734310 ~2003
Exponent Prime Factor Digits Year
1528625999305725199910 ~2003
1528627979305725595910 ~2003
1528631939305726387910 ~2003
1528660163305732032710 ~2003
1528665503305733100710 ~2003
1528684991305736998310 ~2003
15287350271528735027111 ~2004
1528777091305755418310 ~2003
15287771773669065224911 ~2005
1528836923305767384710 ~2003
1528947923305789584710 ~2003
15289592332140542926311 ~2005
1529034803305806960710 ~2003
1529105339305821067910 ~2003
1529185211305837042310 ~2003
1529188319305837663910 ~2003
1529247719305849543910 ~2003
1529268479305853695910 ~2003
1529291051305858210310 ~2003
15292969611223437568911 ~2004
1529366963305873392710 ~2003
1529390399305878079910 ~2003
15294037633670569031311 ~2005
1529405413917643247910 ~2004
15294443932141222150311 ~2005
Exponent Prime Factor Digits Year
15295499094894559708911 ~2006
1529584621917750772710 ~2004
1529614403305922880710 ~2003
15297204292141608600711 ~2005
15297544511529754451111 ~2004
1529764199305952839910 ~2003
15297794173671470600911 ~2005
1529816363305963272710 ~2003
1529847971305969594310 ~2003
1529894963305978992710 ~2003
1529981483305996296710 ~2003
1529996939305999387910 ~2003
1530001859306000371910 ~2003
1530043561918026136710 ~2004
1530143243306028648710 ~2003
1530285551306057110310 ~2003
15303258013366716762311 ~2005
1530347243306069448710 ~2003
1530354359306070871910 ~2003
1530546119306109223910 ~2003
1530602663306120532710 ~2003
1530732431306146486310 ~2003
1530753683306150736710 ~2003
1530760391306152078310 ~2003
1530774097918464458310 ~2004
Exponent Prime Factor Digits Year
1530777191306155438310 ~2003
1530779291306155858310 ~2003
1530788123306157624710 ~2003
1530801263306160252710 ~2003
1530803231306160646310 ~2003
1530850361918510216710 ~2004
1530853979306170795910 ~2003
1530939359306187871910 ~2003
1530962483306192496710 ~2003
15309647832449543652911 ~2005
15309950293674388069711 ~2005
1531094951306218990310 ~2003
1531136219306227243910 ~2003
1531146791306229358310 ~2003
15311872491224949799311 ~2004
1531200743306240148710 ~2003
1531201751306240350310 ~2003
1531208219306241643910 ~2003
1531239299306247859910 ~2003
15312562132143758698311 ~2005
1531275923306255184710 ~2003
1531349951306269990310 ~2003
1531368743306273748710 ~2003
1531394951306278990310 ~2003
15314106078882181520711 ~2006
Home
4.903.097 digits
e-mail
25-07-08