Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1220233211244046642310 ~2002
1220277257732166354310 ~2003
1220277419244055483910 ~2002
12203022432928725383311 ~2005
1220346311244069262310 ~2002
1220368991244073798310 ~2002
1220374619244074923910 ~2002
1220386319244077263910 ~2002
1220401163244080232710 ~2002
1220411603244082320710 ~2002
1220417279244083455910 ~2002
1220427011244085402310 ~2002
1220434031244086806310 ~2002
1220495321732297192710 ~2003
1220523779244104755910 ~2002
1220540879244108175910 ~2002
1220602979244120595910 ~2002
12206737211953077953711 ~2004
1220688779244137755910 ~2002
1220701271244140254310 ~2002
1220731103244146220710 ~2002
1220746451244149290310 ~2002
1220766433732459859910 ~2003
1220787413732472447910 ~2003
1220824439244164887910 ~2002
Exponent Prime Factor Digits Year
1220833871244166774310 ~2002
1220841959244168391910 ~2002
1220859779244171955910 ~2002
1220859851244171970310 ~2002
1220880197976704157710 ~2003
1220892611244178522310 ~2002
1220933039244186607910 ~2002
1220952203244190440710 ~2002
1220956559244191311910 ~2002
1220964863244192972710 ~2002
12209736797081647338311 ~2006
1220997191244199438310 ~2002
1221005777732603466310 ~2003
1221010079244202015910 ~2002
1221041831244208366310 ~2002
1221054083244210816710 ~2002
1221087971244217594310 ~2002
1221134039244226807910 ~2002
1221135299244227059910 ~2002
1221150503244230100710 ~2002
12211661831221166183111 ~2004
1221170123244234024710 ~2002
1221241403244248280710 ~2002
1221273083244254616710 ~2002
1221294803244258960710 ~2002
Exponent Prime Factor Digits Year
12213066311954090609711 ~2004
1221355517977084413710 ~2003
1221394847977115877710 ~2003
1221434111244286822310 ~2002
1221452423244290484710 ~2002
1221522083244304416710 ~2002
1221549911244309982310 ~2002
1221558671244311734310 ~2002
1221571139244314227910 ~2002
1221572591244314518310 ~2002
1221586979244317395910 ~2002
1221587651244317530310 ~2002
1221618371244323674310 ~2002
12216351671954616267311 ~2004
1221636551244327310310 ~2002
1221656231244331246310 ~2002
1221695417977356333710 ~2003
1221713819244342763910 ~2002
1221734729977387783310 ~2003
1221810413733086247910 ~2003
1221812243244362448710 ~2002
1221838109977470487310 ~2003
12218610071221861007111 ~2004
12218792591221879259111 ~2004
1221919943244383988710 ~2002
Exponent Prime Factor Digits Year
1221944051244388810310 ~2002
1221944519244388903910 ~2002
1221952703244390540710 ~2002
1221966659244393331910 ~2002
1222014779244402955910 ~2002
1222052159244410431910 ~2002
12220531871222053187111 ~2004
1222053323244410664710 ~2002
1222087679977670143310 ~2003
1222119863244423972710 ~2002
1222150781733290468710 ~2003
1222160557733296334310 ~2003
1222164959244432991910 ~2002
1222175963244435192710 ~2002
1222182911244436582310 ~2002
1222222031244444406310 ~2002
1222231873733339123910 ~2003
1222232723244446544710 ~2002
1222252973733351783910 ~2003
12223011071222301107111 ~2004
1222370183244474036710 ~2002
1222373963244474792710 ~2002
1222416757733450054310 ~2003
1222430123244486024710 ~2002
1222438621733463172710 ~2003
Home
5.157.210 digits
e-mail
25-11-02