Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1061303521636782112710 ~2003
1061307083212261416710 ~2002
1061347433636808459910 ~2003
1061354603212270920710 ~2002
1061377391212275478310 ~2002
1061377463212275492710 ~2002
1061386919212277383910 ~2002
1061430743212286148710 ~2002
1061512271212302454310 ~2002
1061512619212302523910 ~2002
1061535239212307047910 ~2002
1061553011212310602310 ~2002
1061556539212311307910 ~2002
10615704372547769048911 ~2004
1061599463212319892710 ~2002
1061613431212322686310 ~2002
1061630351212326070310 ~2002
1061639063212327812710 ~2002
10616408833609579002311 ~2005
10616515791910972842311 ~2004
1061663411849330728910 ~2003
106173906714439651311312 ~2006
1061754971212350994310 ~2002
1061857763212371552710 ~2002
1061859959212371991910 ~2002
Exponent Prime Factor Digits Year
1061894303212378860710 ~2002
1061921717849537373710 ~2003
1061925443212385088710 ~2002
1061929853637157911910 ~2003
1061942639212388527910 ~2002
10619590791911526342311 ~2004
1061994719849595775310 ~2003
106200239912744028788112 ~2006
1062030143212406028710 ~2002
1062086639212417327910 ~2002
1062092747849674197710 ~2003
10620964631062096463111 ~2003
1062114743212422948710 ~2002
1062118091212423618310 ~2002
1062134603212426920710 ~2002
1062153299212430659910 ~2002
10621975571699516091311 ~2004
10622448492549387637711 ~2004
10622461374036535320711 ~2005
1062286223212457244710 ~2002
1062287879212457575910 ~2002
10622944391062294439111 ~2003
1062297443212459488710 ~2002
1062314843212462968710 ~2002
1062366491212473298310 ~2002
Exponent Prime Factor Digits Year
1062370871212474174310 ~2002
1062379151212475830310 ~2002
1062384299212476859910 ~2002
1062393077849914461710 ~2003
1062455843212491168710 ~2002
1062480599212496119910 ~2002
10624829894249931956111 ~2005
1062549899212509979910 ~2002
1062558383212511676710 ~2002
10626352572550324616911 ~2004
1062636563212527312710 ~2002
1062638183212527636710 ~2002
1062659861637595916710 ~2003
1062666131212533226310 ~2002
1062678803212535760710 ~2002
10627012031700321924911 ~2004
1062720839212544167910 ~2002
1062735623212547124710 ~2002
10627373831062737383111 ~2003
1062744317850195453710 ~2003
1062765971212553194310 ~2002
1062780863212556172710 ~2002
1062785819212557163910 ~2002
1062839891212567978310 ~2002
10628523171487993243911 ~2004
Exponent Prime Factor Digits Year
1062865439212573087910 ~2002
1062884783212576956710 ~2002
1062902723212580544710 ~2002
1062949031212589806310 ~2002
1063005899212601179910 ~2002
1063019939212603987910 ~2002
1063026011212605202310 ~2002
1063036619212607323910 ~2002
1063073281637843968710 ~2003
10630756391063075639111 ~2003
1063154879850523903310 ~2003
1063183237637909942310 ~2003
1063190699850552559310 ~2003
1063255211212651042310 ~2002
1063292903212658580710 ~2002
1063293971212658794310 ~2002
1063372733638023639910 ~2003
1063469531212693906310 ~2002
1063493831212698766310 ~2002
1063498883212699776710 ~2002
10635289437019291023911 ~2005
10635412432765207231911 ~2004
1063602863212720572710 ~2002
1063603301850882640910 ~2003
1063624871212724974310 ~2002
Home
5.157.210 digits
e-mail
25-11-02