Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
9185678411469708545711 ~2003
918572639183714527910 ~2001
9185825411469732065711 ~2003
9186093474409324865711 ~2004
91864703324252281671312 ~2006
918691451183738290310 ~2001
918698321551218992710 ~2002
918699731183739946310 ~2001
918725231183745046310 ~2001
918771017551262610310 ~2002
918781313551268787910 ~2002
918789611183757922310 ~2001
918802823183760564710 ~2001
918804697551282818310 ~2002
918849023183769804710 ~2001
918859661551315796710 ~2002
918865919183773183910 ~2001
9188794194594397095111 ~2004
918886343183777268710 ~2001
918894503183778900710 ~2001
918946943183789388710 ~2001
918964181551378508710 ~2002
918988043183797608710 ~2001
918998701551399220710 ~2002
919084619183816923910 ~2001
Exponent Prime Factor Digits Year
919127879183825575910 ~2001
919148999183829799910 ~2001
919155383183831076710 ~2001
9191621593125151340711 ~2004
9191635792205992589711 ~2004
919182311183836462310 ~2001
919209311183841862310 ~2001
919278599183855719910 ~2001
919286603183857320710 ~2001
919317599183863519910 ~2001
919389221551633532710 ~2002
919394711183878942310 ~2001
9194106476803638787911 ~2005
919418039183883607910 ~2001
9194253372206620808911 ~2004
919426177551655706310 ~2002
919428011183885602310 ~2001
919432511183886502310 ~2001
919473019919473019110 ~2003
9194788698643101368711 ~2005
919483979183896795910 ~2001
919510079183902015910 ~2001
919513043183902608710 ~2001
919553879183910775910 ~2001
919569611183913922310 ~2001
Exponent Prime Factor Digits Year
919603511183920702310 ~2001
919612751183922550310 ~2001
919634591183926918310 ~2001
919668383183933676710 ~2001
919704143183940828710 ~2001
9197080332207299279311 ~2004
919736849735789479310 ~2002
9197499736438249811111 ~2005
919778663183955732710 ~2001
9197802376438461659111 ~2005
919786379183957275910 ~2001
919788251183957650310 ~2001
9198091395886778489711 ~2005
919813091183962618310 ~2001
919822511183964502310 ~2001
919844231183968846310 ~2001
919846451183969290310 ~2001
919847711183969542310 ~2001
919860317735888253710 ~2002
919874783183974956710 ~2001
919875779183975155910 ~2001
919911481551946888710 ~2002
9199145711655846227911 ~2003
919926251183985250310 ~2001
9199282397543411559911 ~2005
Exponent Prime Factor Digits Year
920033711184006742310 ~2001
920041931184008386310 ~2001
920056211184011242310 ~2001
920094011184018802310 ~2001
9201244871472199179311 ~2003
920160779184032155910 ~2001
920191439184038287910 ~2001
920194441552116664710 ~2002
920204039184040807910 ~2001
920217983184043596710 ~2001
920258039184051607910 ~2001
920269319184053863910 ~2001
920293379736234703310 ~2002
920320139184064027910 ~2001
920326811184065362310 ~2001
920327231184065446310 ~2001
920333483184066696710 ~2001
920364443184072888710 ~2001
920369591184073918310 ~2001
920386763184077352710 ~2001
920401633552240979910 ~2002
920410703184082140710 ~2001
920422031184084406310 ~2001
920447123184089424710 ~2001
9204637814418226148911 ~2004
Home
5.157.210 digits
e-mail
25-11-02