Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
17037275771022236546311 ~2004
1703735531340747106310 ~2003
1703737151340747430310 ~2003
17037639111363011128911 ~2005
17037726616815090644111 ~2006
1703801111340760222310 ~2003
1703819531340763906310 ~2003
17038385331022303119911 ~2004
17038833431703883343111 ~2005
1703905211340781042310 ~2003
17039922311703992231111 ~2005
17040432611022425956711 ~2004
1704091331340818266310 ~2003
1704101783340820356710 ~2003
170423103115338079279112 ~2007
17043461211022607672711 ~2004
1704432479340886495910 ~2003
17044591811022675508711 ~2004
1704494411340898882310 ~2003
17045460371022727622311 ~2004
1704576959340915391910 ~2003
1704669839340933967910 ~2003
17046799931022807995911 ~2004
1704694331340938866310 ~2003
1704752459340950491910 ~2003
Exponent Prime Factor Digits Year
1704799619340959923910 ~2003
17048299611022897976711 ~2004
1704928523340985704710 ~2003
1704943151340988630310 ~2003
1705048703341009740710 ~2003
1705063823341012764710 ~2003
1705090883341018176710 ~2003
1705099163341019832710 ~2003
1705181099341036219910 ~2003
1705191899341038379910 ~2003
1705250903341050180710 ~2003
1705265591341053118310 ~2003
1705280963341056192710 ~2003
1705293563341058712710 ~2003
1705324763341064952710 ~2003
1705349939341069987910 ~2003
1705440083341088016710 ~2003
1705471811341094362310 ~2003
17054772371023286342311 ~2004
1705509563341101912710 ~2003
1705582643341116528710 ~2003
1705632119341126423910 ~2003
17056582571023394954311 ~2004
1705661063341132212710 ~2003
1705676471341135294310 ~2003
Exponent Prime Factor Digits Year
17057049411023422964711 ~2004
1705796831341159366310 ~2003
1705814111341162822310 ~2003
1705923143341184628710 ~2003
1705923839341184767910 ~2003
1705963163341192632710 ~2003
1705980539341196107910 ~2003
1706023619341204723910 ~2003
1706102063341220412710 ~2003
1706108399341221679910 ~2003
1706132003341226400710 ~2003
1706272943341254588710 ~2003
1706339363341267872710 ~2003
1706450183341290036710 ~2003
1706490143341298028710 ~2003
17065272411023916344711 ~2004
1706550311341310062310 ~2003
17065738371023944302311 ~2004
1706579723341315944710 ~2003
17065896371023953782311 ~2004
1706594843341318968710 ~2003
1706605619341321123910 ~2003
17066519771023991186311 ~2004
1706705411341341082310 ~2003
17067196611365375728911 ~2005
Exponent Prime Factor Digits Year
1706726831341345366310 ~2003
17067766011365421280911 ~2005
17067900531024074031911 ~2004
17068041797168577551911 ~2006
1706878763341375752710 ~2003
1706899283341379856710 ~2003
1706902079341380415910 ~2003
17071301691365704135311 ~2005
1707131291341426258310 ~2003
1707137891341427578310 ~2003
1707168383341433676710 ~2003
1707182591341436518310 ~2003
1707217859341443571910 ~2003
1707224819341444963910 ~2003
1707237443341447488710 ~2003
1707239819341447963910 ~2003
1707335783341467156710 ~2003
1707360251341472050310 ~2003
1707389459341477891910 ~2003
17074012571024440754311 ~2004
1707503351341500670310 ~2003
1707512459341502491910 ~2003
1707526031341505206310 ~2003
1707571223341514244710 ~2003
1707654671341530934310 ~2003
Home
4.724.182 digits
e-mail
25-04-13