Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
12776138712044182193711 ~2004
1277620919255524183910 ~2002
1277624531255524906310 ~2002
12776322591022105807311 ~2004
1277639183255527836710 ~2002
1277660711255532142310 ~2002
12777054911277705491111 ~2004
1277782763255556552710 ~2002
12778191493833457447111 ~2005
1277842343255568468710 ~2002
12778429991277842999111 ~2004
1277853431255570686310 ~2002
1277869553766721731910 ~2003
1277880479255576095910 ~2002
1277916457766749874310 ~2003
12779423831277942383111 ~2004
12779474211022357936911 ~2004
1277969717766781830310 ~2003
12780248337156939064911 ~2006
1278025559255605111910 ~2002
1278032219255606443910 ~2002
1278096971255619394310 ~2002
12782641336902626318311 ~2006
1278270299255654059910 ~2002
1278292439255658487910 ~2002
Exponent Prime Factor Digits Year
1278305771255661154310 ~2002
1278317951255663590310 ~2002
1278320531255664106310 ~2002
1278321419255664283910 ~2002
12783457696903067152711 ~2006
1278373451255674690310 ~2002
1278380459255676091910 ~2002
1278384839255676967910 ~2002
1278522431255704486310 ~2002
1278584171255716834310 ~2002
12785843571790018099911 ~2004
1278593639255718727910 ~2002
1278610241767166144710 ~2003
1278626521767175912710 ~2003
1278719303255743860710 ~2002
1278735061767241036710 ~2003
1278750611255750122310 ~2002
1278823523255764704710 ~2002
12788426111278842611111 ~2004
12788679236394339615111 ~2006
1278878297767326978310 ~2003
1278888599255777719910 ~2002
1278891899255778379910 ~2002
12789274912302069483911 ~2004
1278962579255792515910 ~2002
Exponent Prime Factor Digits Year
1278995351255799070310 ~2002
1279019303255803860710 ~2002
1279063319255812663910 ~2002
1279099691255819938310 ~2002
1279110323255822064710 ~2002
1279212023255842404710 ~2002
1279216979255843395910 ~2002
1279254611255850922310 ~2002
12792846411023427712911 ~2004
1279311179255862235910 ~2002
1279402739255880547910 ~2002
1279537859255907571910 ~2002
1279555223255911044710 ~2002
12796083891791451744711 ~2004
12796111196142133371311 ~2006
1279615919255923183910 ~2002
1279616951255923390310 ~2002
1279637939255927587910 ~2002
1279682051255936410310 ~2002
12796897913327193456711 ~2005
1279690733767814439910 ~2003
1279763123255952624710 ~2002
1279787471255957494310 ~2002
12797888232047662116911 ~2004
1279801223255960244710 ~2002
Exponent Prime Factor Digits Year
1279813103255962620710 ~2002
1279813739255962747910 ~2002
1279828139255965627910 ~2002
12798399891023871991311 ~2004
12798442573071626216911 ~2005
1279881803255976360710 ~2002
12799052511023924200911 ~2004
1279933861767960316710 ~2003
1279968923255993784710 ~2002
1279997399255999479910 ~2002
12800056971024004557711 ~2004
1280048879256009775910 ~2002
1280107859256021571910 ~2002
12801228891024098311311 ~2004
1280141363256028272710 ~2002
1280197739256039547910 ~2002
1280231279256046255910 ~2002
12802967934096949737711 ~2005
1280344201768206520710 ~2003
12803767911024301432911 ~2004
1280403731256080746310 ~2002
1280409413768245647910 ~2003
1280413523256082704710 ~2002
1280443091256088618310 ~2002
1280489471256097894310 ~2002
Home
4.903.097 digits
e-mail
25-07-08