Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1451803763290360752710 ~2003
1451831723290366344710 ~2003
1451958323290391664710 ~2003
1451960483290392096710 ~2003
1451967311290393462310 ~2003
1451977679290395535910 ~2003
1451990201871194120710 ~2004
1452009983290401996710 ~2003
1452016199290403239910 ~2003
1452030233871218139910 ~2004
1452050399290410079910 ~2003
1452056279290411255910 ~2003
1452083159290416631910 ~2003
14521304571161704365711 ~2004
14521475811161718064911 ~2004
1452155423290431084710 ~2003
14521630671161730453711 ~2004
14521820093485236821711 ~2005
1452209579290441915910 ~2003
1452227723290445544710 ~2003
14522774711452277471111 ~2004
1452338099290467619910 ~2003
14523474191452347419111 ~2004
1452428843290485768710 ~2003
1452480563290496112710 ~2003
Exponent Prime Factor Digits Year
1452516311290503262310 ~2003
14525557031452555703111 ~2004
145259844725856252356712 ~2007
1452667283290533456710 ~2003
1452673763290534752710 ~2003
1452697019290539403910 ~2003
1452744179290548835910 ~2003
1452786383290557276710 ~2003
1452889631290577926310 ~2003
1452926837871756102310 ~2004
1452927551290585510310 ~2003
1452941603290588320710 ~2003
1452983579290596715910 ~2003
14529876191452987619111 ~2004
1453014851290602970310 ~2003
1453031903290606380710 ~2003
1453032803290606560710 ~2003
1453045151290609030310 ~2003
1453056461871833876710 ~2004
1453092983290618596710 ~2003
1453128959290625791910 ~2003
14531641796975188059311 ~2006
1453189823290637964710 ~2003
14531965996103425715911 ~2006
1453220963290644192710 ~2003
Exponent Prime Factor Digits Year
1453382939290676587910 ~2003
14534369092034811672711 ~2005
1453453643290690728710 ~2003
1453477463290695492710 ~2003
1453481231290696246310 ~2003
14535118271453511827111 ~2004
1453537691290707538310 ~2003
1453557863290711572710 ~2003
1453593923290718784710 ~2003
1453729523290745904710 ~2003
1453764479290752895910 ~2003
1453823963290764792710 ~2003
1453853111290770622310 ~2003
1453857373872314423910 ~2004
1453863563290772712710 ~2003
1453890131290778026310 ~2003
1453989899290797979910 ~2003
1454001743290800348710 ~2003
1454009939290801987910 ~2003
1454029751290805950310 ~2003
1454033351290806670310 ~2003
1454047691290809538310 ~2003
1454057021872434212710 ~2004
14540853312617353595911 ~2005
14541348111163307848911 ~2004
Exponent Prime Factor Digits Year
1454161991290832398310 ~2003
1454196239290839247910 ~2003
1454236403290847280710 ~2003
1454275811290855162310 ~2003
1454283119290856623910 ~2003
1454295179290859035910 ~2003
1454315903290863180710 ~2003
1454456603290891320710 ~2003
1454457731290891546310 ~2003
1454476379290895275910 ~2003
1454485811290897162310 ~2003
14545177973490842712911 ~2005
1454533621872720172710 ~2004
1454610161872766096710 ~2004
1454630873872778523910 ~2004
1454709491290941898310 ~2003
14547098811163767904911 ~2004
1454732879290946575910 ~2003
1454757851290951570310 ~2003
1454761991290952398310 ~2003
1454795761872877456710 ~2004
1454836391290967278310 ~2003
1454855999290971199910 ~2003
1454859743290971948710 ~2003
1454914403290982880710 ~2003
Home
4.724.182 digits
e-mail
25-04-13