Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
789963491157992698310 ~2001
789978911157995782310 ~2001
790055099158011019910 ~2001
790082017474049210310 ~2002
790096799158019359910 ~2001
790119923158023984710 ~2001
790123391158024678310 ~2001
790133849632107079310 ~2002
790140443158028088710 ~2001
790154639158030927910 ~2001
790161503158032300710 ~2001
790179059158035811910 ~2001
790189931158037986310 ~2001
790191191158038238310 ~2001
790195823158039164710 ~2001
790209911158041982310 ~2001
790214879158042975910 ~2001
790221563158044312710 ~2001
790226231158045246310 ~2001
790246031158049206310 ~2001
790264379158052875910 ~2001
790270139158054027910 ~2001
790270199158054039910 ~2001
790326421474195852710 ~2002
790329539158065907910 ~2001
Exponent Prime Factor Digits Year
790338817474203290310 ~2002
790352939158070587910 ~2001
790355999158071199910 ~2001
790363943158072788710 ~2001
790380179158076035910 ~2001
790398431158079686310 ~2001
790405087790405087110 ~2002
790414411790414411110 ~2002
790435619158087123910 ~2001
790441633474264979910 ~2002
790474259158094851910 ~2001
790478879158095775910 ~2001
790498721474299232710 ~2002
790518719158103743910 ~2001
790541723158108344710 ~2001
7905587893162235156111 ~2004
790561283158112256710 ~2001
7905642791423015702311 ~2003
790579631158115926310 ~2001
790585571158117114310 ~2001
790600541474360324710 ~2002
790615643158123128710 ~2001
790621691158124338310 ~2001
7906220391897492893711 ~2003
790622603158124520710 ~2001
Exponent Prime Factor Digits Year
790640579158128115910 ~2001
790641503158128300710 ~2001
7906558932371967679111 ~2003
790674701474404820710 ~2002
790728083158145616710 ~2001
790735921474441552710 ~2002
790741517474444910310 ~2002
790750463158150092710 ~2001
790758071158151614310 ~2001
7907999411265279905711 ~2003
790803281474481968710 ~2002
790814723158162944710 ~2001
790835261474501156710 ~2002
7908635171898072440911 ~2003
790873211158174642310 ~2001
790902071158180414310 ~2001
790909811158181962310 ~2001
790931417632745133710 ~2002
790949723158189944710 ~2001
791039303158207860710 ~2001
791049719158209943910 ~2001
791050391158210078310 ~2001
791051711158210342310 ~2001
791055311158211062310 ~2001
791055983158211196710 ~2001
Exponent Prime Factor Digits Year
791078003158215600710 ~2001
791123897632899117710 ~2002
791128391158225678310 ~2001
791134343158226868710 ~2001
791155657474693394310 ~2002
791165951158233190310 ~2001
791178959158235791910 ~2001
791188883158237776710 ~2001
791189153474713491910 ~2002
791213963158242792710 ~2001
791252783158250556710 ~2001
791268083158253616710 ~2001
791286311158257262310 ~2001
791308781474785268710 ~2002
791316479158263295910 ~2001
791325011158265002310 ~2001
791328899633063119310 ~2002
791364853474818911910 ~2002
7914091631266254660911 ~2003
791417633474850579910 ~2002
791418443158283688710 ~2001
791454659158290931910 ~2001
791474303158294860710 ~2001
791529779158305955910 ~2001
791533079633226463310 ~2002
Home
5.157.210 digits
e-mail
25-11-02