Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1208768699241753739910 ~2002
1208806283241761256710 ~2002
1208807003241761400710 ~2002
1208862383241772476710 ~2002
1208897303241779460710 ~2002
12089250071208925007111 ~2004
1208953379241790675910 ~2002
1208992979241798595910 ~2002
1209069791241813958310 ~2002
1209078659241815731910 ~2002
1209093773725456263910 ~2003
1209220223241844044710 ~2002
1209253481967402784910 ~2003
1209283079241856615910 ~2002
1209307499241861499910 ~2002
12093253316772221853711 ~2005
1209334271241866854310 ~2002
1209335893725601535910 ~2003
1209348911241869782310 ~2002
1209378119241875623910 ~2002
1209387941725632764710 ~2003
1209422531241884506310 ~2002
1209422957967538365710 ~2003
1209434669967547735310 ~2003
1209457043241891408710 ~2002
Exponent Prime Factor Digits Year
12094624512177032411911 ~2004
12094799235079815676711 ~2005
1209485041725691024710 ~2003
1209512519241902503910 ~2002
1209558277725734966310 ~2003
1209562703241912540710 ~2002
1209646547967717237710 ~2003
1209651143241930228710 ~2002
1209655259241931051910 ~2002
1209696203241939240710 ~2002
1209743543241948708710 ~2002
120979405715243405118312 ~2006
12098373131935739700911 ~2004
1209850331241970066310 ~2002
1209851063241970212710 ~2002
1209864923241972984710 ~2002
1209878051241975610310 ~2002
1209906611241981322310 ~2002
1209920897967936717710 ~2003
1209953113725971867910 ~2003
1209956711241991342310 ~2002
1209969157725981494310 ~2003
1210010099242002019910 ~2002
1210056779242011355910 ~2002
12100597271936095563311 ~2004
Exponent Prime Factor Digits Year
1210082519242016503910 ~2002
12100830672178149520711 ~2004
1210119791242023958310 ~2002
1210121051242024210310 ~2002
1210131239242026247910 ~2002
12101327471210132747111 ~2004
1210150871242030174310 ~2002
1210163291242032658310 ~2002
12101894711210189471111 ~2004
1210190519242038103910 ~2002
1210262639242052527910 ~2002
1210267703242053540710 ~2002
12102791411936446625711 ~2004
1210349669968279735310 ~2003
12103699692904887925711 ~2005
1210408769968327015310 ~2003
1210426583242085316710 ~2002
1210454123242090824710 ~2002
1210457459968365967310 ~2003
1210486631242097326310 ~2002
12105078072905218736911 ~2005
1210535159242107031910 ~2002
1210569803242113960710 ~2002
1210590779242118155910 ~2002
1210600757968480605710 ~2003
Exponent Prime Factor Digits Year
1210630753726378451910 ~2003
1210682003242136400710 ~2002
1210683983242136796710 ~2002
1210700999242140199910 ~2002
1210761911242152382310 ~2002
1210773023242154604710 ~2002
12107859492663729087911 ~2004
1210795499242159099910 ~2002
1210795517968636413710 ~2003
12108554396054277195111 ~2005
1210909859968727887310 ~2003
1210919657726551794310 ~2003
1210935839242187167910 ~2002
1211064779242212955910 ~2002
1211098991242219798310 ~2002
1211112251242222450310 ~2002
1211126783242225356710 ~2002
1211129603242225920710 ~2002
1211183339242236667910 ~2002
1211239079242247815910 ~2002
1211251271242250254310 ~2002
1211260751242252150310 ~2002
1211278811242255762310 ~2002
1211334361726800616710 ~2003
1211385341726831204710 ~2003
Home
4.903.097 digits
e-mail
25-07-08