Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1602940511320588102310 ~2003
16029507111282360568911 ~2004
1602991919320598383910 ~2003
1602994703320598940710 ~2003
1602995171320599034310 ~2003
1603016903320603380710 ~2003
16030886933847412863311 ~2006
1603091761961855056710 ~2004
1603165103320633020710 ~2003
1603178891320635778310 ~2003
1603187279320637455910 ~2003
1603207883320641576710 ~2003
1603270321961962192710 ~2004
16033017672885943180711 ~2005
1603306751320661350310 ~2003
1603342253962005351910 ~2004
1603372139320674427910 ~2003
16035348471282827877711 ~2004
1603549331320709866310 ~2003
1603551611320710322310 ~2003
1603602491320720498310 ~2003
16036302895131616924911 ~2006
1603636019320727203910 ~2003
16036505991282920479311 ~2004
1603683299320736659910 ~2003
Exponent Prime Factor Digits Year
1603685483320737096710 ~2003
16036868397697696827311 ~2006
1603736219320747243910 ~2003
16038392211283071376911 ~2004
1603849319320769863910 ~2003
1603964963320792992710 ~2003
1603980317962388190310 ~2004
1603991111320798222310 ~2003
16040304111283224328911 ~2004
16040322116736935286311 ~2006
1604069171320813834310 ~2003
1604076359320815271910 ~2003
1604088911320817782310 ~2003
1604114819320822963910 ~2003
16041269695133206300911 ~2006
16042032592887565866311 ~2005
1604220323320844064710 ~2003
1604223839320844767910 ~2003
1604439299320887859910 ~2003
1604493623320898724710 ~2003
1604521739320904347910 ~2003
1604649443320929888710 ~2003
1604691839320938367910 ~2003
1604721533962832919910 ~2004
1604860703320972140710 ~2003
Exponent Prime Factor Digits Year
1604864819320972963910 ~2003
160489660934344787432712 ~2008
1604922479320984495910 ~2003
1604966003320993200710 ~2003
1604982083320996416710 ~2003
1604996273962997763910 ~2004
1605056951321011390310 ~2003
1605079319321015863910 ~2003
1605121139321024227910 ~2003
16051220392889219670311 ~2005
16051849071284147925711 ~2004
1605196031321039206310 ~2003
1605252503321050500710 ~2003
1605299159321059831910 ~2003
1605422111321084422310 ~2003
16054360332568697652911 ~2005
1605452993963271795910 ~2004
1605465731321093146310 ~2003
1605507539321101507910 ~2003
1605537611321107522310 ~2003
1605548111321109622310 ~2003
160557282114129040824912 ~2007
1605631931321126386310 ~2003
1605643859321128771910 ~2003
1605693191321138638310 ~2003
Exponent Prime Factor Digits Year
16056964191284557135311 ~2004
16057069791284565583311 ~2004
1605723263321144652710 ~2003
16057301511284584120911 ~2004
16057476535138392489711 ~2006
1605788423321157684710 ~2003
1605821159321164231910 ~2003
1605845471321169094310 ~2003
1605928901963557340710 ~2004
1605946739321189347910 ~2003
16060151991284812159311 ~2004
1606016939321203387910 ~2003
16061075271284886021711 ~2004
1606244723321248944710 ~2003
16063265932248857230311 ~2005
1606335551321267110310 ~2003
1606355363321271072710 ~2003
1606456619321291323910 ~2003
1606460363321292072710 ~2003
16064624092249047372711 ~2005
1606487273963892363910 ~2004
1606500611321300122310 ~2003
1606535737963921442310 ~2004
1606610339321322067910 ~2003
1606783259321356651910 ~2003
Home
4.724.182 digits
e-mail
25-04-13