Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1788242831357648566310 ~2003
1788314519357662903910 ~2003
17883409131073004547911 ~2004
1788510239357702047910 ~2003
1788516491357703298310 ~2003
17885904591430872367311 ~2005
17886594291430927543311 ~2005
1788685163357737032710 ~2003
17887585094293020421711 ~2006
17888016911788801691111 ~2005
1789158551357831710310 ~2003
17892541971073552518311 ~2004
1789283003357856600710 ~2003
17893252339662356258311 ~2007
17893397513220811551911 ~2006
17894473394294673613711 ~2006
1789504883357900976710 ~2003
17895354772505349667911 ~2005
17895517632863282820911 ~2005
17895631731073737903911 ~2004
17896544211431723536911 ~2005
1789816991357963398310 ~2003
1789839911357967982310 ~2003
1789924151357984830310 ~2003
1789964171357992834310 ~2003
Exponent Prime Factor Digits Year
1790036771358007354310 ~2003
1790126939358025387910 ~2003
1790152979358030595910 ~2003
17902096011074125760711 ~2004
1790212019358042403910 ~2003
17902268771074136126311 ~2004
1790233559358046711910 ~2003
1790377223358075444710 ~2003
1790407739358081547910 ~2003
1790592071358118414310 ~2003
17905973834297433719311 ~2006
1790601539358120307910 ~2003
17906389371432511149711 ~2005
17906599331074395959911 ~2004
1790670971358134194310 ~2003
1790695583358139116710 ~2003
1790838383358167676710 ~2003
1791077663358215532710 ~2003
1791107999358221599910 ~2003
1791136043358227208710 ~2003
1791257711358251542310 ~2003
1791340559358268111910 ~2003
1791349139358269827910 ~2003
17914480971433158477711 ~2005
1791623051358324610310 ~2003
Exponent Prime Factor Digits Year
1791653603358330720710 ~2003
1791764603358352920710 ~2003
1791795623358359124710 ~2003
1791837923358367584710 ~2003
1791907979358381595910 ~2003
17919855771075191346311 ~2004
1791987371358397474310 ~2003
17920358771075221526311 ~2004
1792038071358407614310 ~2003
1792040039358408007910 ~2003
1792065323358413064710 ~2003
1792126751358425350310 ~2003
17921425011075285500711 ~2004
1792161779358432355910 ~2003
1792171379358434275910 ~2003
1792258631358451726310 ~2003
17922631572867621051311 ~2005
1792313531358462706310 ~2003
1792320203358464040710 ~2003
1792323191358464638310 ~2003
1792376051358475210310 ~2003
17924269071433941525711 ~2005
1792589699358517939910 ~2003
17926408971075584538311 ~2004
1792648523358529704710 ~2003
Exponent Prime Factor Digits Year
1792728263358545652710 ~2003
1792805039358561007910 ~2003
179286709920080111508912 ~2008
1793186963358637392710 ~2003
1793190299358638059910 ~2003
17932201371075932082311 ~2004
1793277539358655507910 ~2003
17933413211076004792711 ~2004
1793369183358673836710 ~2003
1793441999358688399910 ~2003
179344633910401988766312 ~2007
17934522791793452279111 ~2005
1793471279358694255910 ~2003
1793529659358705931910 ~2003
1793544443358708888710 ~2003
1793547611358709522310 ~2003
17935550811076133048711 ~2004
17935828011434866240911 ~2005
1793589719358717943910 ~2003
17935935131076156107911 ~2004
17935940931076156455911 ~2004
1793648159358729631910 ~2003
1793673191358734638310 ~2003
1793691239358738247910 ~2003
1793724623358744924710 ~2003
Home
4.724.182 digits
e-mail
25-04-13